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Figure 1: We attribute a single 2D image of an object (left) with depth by transporting information from a 3D shape deformation subspace
learned by analyzing a network of related but different shapes (middle). For visualization, we color code the estimated depth with values
increasing from red to blue (right).

Abstract

Images, while easy to acquire, view, publish, and share, they lack
critical depth information. This poses a serious bottleneck for many
image manipulation, editing, and retrieval tasks. In this paper we
consider the problem of adding depth to an image of an object, ef-
fectively ‘lifting’ it back to 3D, by exploiting a collection of aligned
3D models of related objects shape. Our key insight is that, even
when the imaged object is not contained in the shape collection,
the network of shapes implicitly characterizes a shape-specific de-
formation subspace that regularizes the problem and enables robust
diffusion of depth information from the shape collection to the in-
put image. We evaluate our fully automatic approach on diverse and
challenging input images, validate the results against Kinect depth
readings, and demonstrate several imaging applications including
depth-enhanced image editing and image relighting.
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1 Introduction

Images remain by far the most popular visual medium. Nowadays
they are easy to acquire and distribute, contain rich visual detail,
can easily be viewed and understood and, as a result, are ubiquitous

in the Web. As 2D projections of our 3D world, however, they
may lack certain semantical information. For example, important
parts of objects may be occluded, and depth data is typically miss-
ing. This poses serious challenges to applications involving image
recognition, manipulation, editing, etc. that could greatly benefit
from this omitted information. Hence, there is a strong motivation
to lift images to 3D by inferring attributes lost in the projection. In
this paper we are specifically interested in inferring depth for the
visible object areas — the key coordinate missing in the projection.

As the problem of recovering depth from single image is naturally
ill-posed, various priors have been proposed for regularization. The
most common and classical approach is to match the input im-
age to a set of 3D objects in a database (i.e., priors), and use the
best matching shape to fill in missing depth information. However,
large-scale deployment of such a method is fundamentally limited
because only a limited number of 3D models is available. Most
often, we do not even have a 3D model of the same or sufficiently
similar object from which the image was taken.

In this paper we consider the problem of estimating depth for an im-
age of an object by exploiting, in a novel joint fashion, a collection
of 3D models of related but largely different objects (see Figure 1).
Key to our approach is the estimation of correspondences between
the image and multiple models, with the help of correspondences
estimated between the models themselves. We address the depth
inference problem in its purest form, where we assume that the ob-
ject image has been segmented from its background (such images
are now commonplace in shopping web sites), while our 3D models
are typically untextured and come from shape collections, such as
the Trimble 3D warehouse.

Our image-based but shape-driven modeling technique is fully au-
tomatic and reconstructs a 3D point cloud from the imaged object.
The algorithm consists of a preprocessing stage, which aligns the
input shapes to each other and learns a deformation model for each
shape; and a reconstruction stage, which uses a continuous opti-
mization to recover the image object pose and reconstruct a point
cloud from the image that aligns with relevant 3D models extracted
from the collection. We show how to formulate an appropriate ob-
jective function, how to obtain an initial solution, and how to effec-
tively refine the solution using an alternating optimization.

In our approach, we jointly match the depth-augmented image, i.e.,
the popup point cloud of the image, with a group of related shapes



in the collection. We pose the task as a joint non-rigid registration
problem, in which each shape can be deformed. The formulation
has two key features. First, in contrast to utilizing a single similar
shape, incorporating a collection of similar shapes offers a better
coverage of the relevant neighborhood of shape space. Second,
since we have already aligned the 3D models to each other, it en-
ables us to apply consistency constraints [Kim et al. 2012a; Huang
and Guibas 2013] to regularize the image to 3D model matching by
using the shape-shape correspondences.

In the joint non-rigid registration formulation, we introduce the key
concept of deformation priors, which govern the deformation of
each shape (c.f., [Averkiou et al. 2014]). Intuitively, we aim to pre-
serve the key structural properties of each shape in the deformation,
so that round shapes stay round, left-to-right symmetries are pre-
served, etc. In particular, instead of detecting these properties form
each shape alone, which turns out to be unreliable, we learn them
from the optimal deformations of each shape to other shapes.

To test the performance of the proposed approach, we have cre-
ated a benchmark dataset consisting of Microsoft Kinect scans of
various categories of objects including chairs, tables, lamps, and
cups. Experimental results show that the proposed approach recov-
ers depth information that is close to Kinect scans, and is signif-
icantly more accurate than state-of-the-art image-based modeling
techniques. Moreover, the proposed approach is robust to variations
in textures and lighting conditions.

We demonstrate depth-enhanced image editing to illustrate the pos-
sibilities offered by our approach. In addition, we show that our
work is a key intermediate step towards the goal of obtaining full
3D models. Using a popup point cloud as input, we can reconstruct
in certain cases a full mesh by exploiting shape symmetries learned
from the shape network.

Contributions. We present the first, to the best of our knowledge,
fully automatic method to utilize a network of related but different
3D objects in order to reconstruct depth information from a single
imaged object. The key novelties are:

• showing how a single modestly-sized shape network can help
infer depth information for a variety of image objects of the
same class;

• using learned deformation models based on an aligned shape
network to compensate for the fact that the image is not from
a model directly present in the database;

• regularizing model deformations using multi-way 3D align-
ment between the initial image point cloud and the shapes in
a neighborhood of the shape network;

In the process of extracting depth information on an image, we also
discover good correspondences between the image and the network
shapes, enabling us to connect the image to the network and trans-
fer complementary information back and forth. Example of such
information transfer can include textures, segmentations, material
properties, labels, etc.

2 Related Work

Data-driven geometry processing. The emergence of large shape
collections provides us with a platform to aggregate information
from multiple shapes to improve the analysis and processing of
individual shapes. Already the Trimble 3D warehouse contains
many thousands of example models per category for most indoor
objects and some popular outdoor categories such as car and air-
plane. Recently, we have witnessed the success of data-driven tech-
niques in shape analysis [Huang et al. 2011; Kim et al. 2012a; Kim
et al. 2013; Huang et al. 2013; Wang et al. 2013], shape model-

ing [Chaudhuri et al. 2011; Kalogerakis et al. 2012; Averkiou et al.
2014] and shape reconstruction [Nan et al. 2012; Kim et al. 2012b;
Shen et al. 2012]. The key task in data-driven geometry process-
ing technique is to establish high-quality correspondences (at either
point- or segment-level) across geometric objects. Although there
exist rich techniques for aligning and matching 3D shapes, the prob-
lem of matching image objects and 3D shapes, which is the major
focus of this paper, is far from being solved.

Image-shape matching. Most existing image-shape matching ap-
proaches [Cyr and Kimia 2004; Xu et al. 2011; Wang et al. 2013]
convert the problem into an image matching problem, i.e., match-
ing images with projected views of 3D shapes. They typically start
from estimating dense correspondences between silhouette curves,
and then interpolate correspondences to interior pixels. [Sun et al.
2011] used an ICP-like approach. Recently, Wang et al. [2013] pro-
posed a technique that directly estimates correspondences between
entire image objects. The major limitation of these approaches is
that a projected view of a 3D shape only contains partial infor-
mation from the original shape. In practice, these techniques are
limited to matching very similar objects. In contrast, we formulate
the image shape matching problem as solving a non-rigid alignment
problem in 3D, i.e., simultaneously estimating optimizing the depth
of the image object and the deformations of 3D shapes to align them
in the 3D space. In particular, we show that matching an image with
a collection of 3D shapes boosts the matching quality by enforcing
consistency between image-shape maps and shape-shape maps.

Pose estimation. There exists a vast body of work to determine the
pose of an object in an image relative to a calibrated camera. The
problem is commonly formulated as a feature correspondence prob-
lem. Thus, they can be distinguished by the type of local image fea-
tures, such as points, lines, curve segments, whole contours [Chen
et al. 2003; Dalal and Triggs 2005; Oliva and Torralba 2006]. Re-
cently, researchers used learning-based scheme to cast it as a classi-
fication and learn good features for viewpoint estimation [Zia et al.
2013]. The task of pose estimation is closely coupled with other
tasks in the image-shape matching problem, such as depth estima-
tion and point correspondence. We therefore model it as a part of
the global optimization problem and iteratively refine it, resulting
in large improvement.

Depth estimation. Estimating the depth of an image object is a
long standing problem in computer vision and computer graphics.
This problem is ill-posed when the input is a single image, and ex-
isting approaches typically incorporate additional information such
as user interaction [Wu et al. 2008] and shading [Lensch et al. 2003;
Goldman et al. 2005], or using abstracted proxy shapes [Zheng
et al. 2012]. However, these approaches are designed for objects
with simple textures and shapes and/or under specific lighting con-
ditions. In other words, they do not apply well on man-made objects
in real images, which exhibit complicated geometries and textures.

With the availability of large collection of depth images, re-
cent depth estimation approaches are based on supervised learn-
ing [Hoiem et al. 2005; Saxena et al. 2009]. Given exemplar depth
images, these approaches learn conditional probabilistic distribu-
tions of pixel depths and relative depths between neighboring pix-
els, and apply the learned distributions to infer the depth informa-
tion of new images. We take a different approach. Since obtaining
3D shapes that are similar in global structure to image objects is
easy, we estimate depth information in an unsupervised manner,
i.e., by directly matching images with 3D shapes, and thus avoiding
the tedious task of performing instance specific learning.

3 Pipeline Overview

The proposed image-based but shape-driven modeling approach
takes a single image object I segmented from background and a
collection of shapes S = {S1, S2, · · · , SN} of the same class as
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Figure 2: Algorithm Pipeline. We reconstruct a 3D point cloud from an image object by utilizing a collection of related shapes. In the
preprocessing stage, we jointly align the input shape collection and learn structure-preserving deformation models for the shapes. Then,
in the reconstruction stage, we lift a single image to 3D in three steps. The first step initializes the camera pose in the coordinate system
associated with the aligned shapes and extracts a set of similar shapes. The second step performs image-image matching to build dense
correspondences between the image object and the similar shapes, and generate an initial 3D point cloud. The final step jointly aligns
the initial point cloud and the selected shapes by simultaneously optimizing the depth of each image pixel, the camera pose, and the shape
deformations.

input, and simultaneously estimates the object pose shown in I and
reconstructs a 3D point cloud P from I . For simplicity, we assume
that all input shapes are supported by the same ground plane [Huang
et al. 2013], so a common vertical direction is available.

As the shape collection typically does not contain a shape that is
exactly same as the object to be reconstructed, we formulate the
task as a joint non-rigid alignment problem. The variables to be op-
timized are the point cloud, parameterized by the camera pose and
the z-coordinates (pixel depths) of the image object, and deforma-
tions of a set of similar shapes. The objective function minimizes
the distance between the point cloud and the deformed shapes.
However, there are several challenges. First, the depth coordinates
of the point cloud are unconstrained yet we cannot allow the shapes
to be deformed arbitrarily, since otherwise both the point cloud and
the shapes may be stretched undesirably when being aligned. Sec-
ond, the success of the non-rigid alignment depends on a good ini-
tialization for both the camera pose and the point cloud. Third,
even with good initialization, it is challenging to solve the induced
optimization problem involving the depth of each pixel effectively.
What helps in our situation, and the fundamental difference be-
tween the proposed approach and other shape-driven image based
modeling techniques, is that we utilize the information provided by
the collection to regularize the problem.

As illustrated in Figure 2, the pipeline consists of a preprocessing
stage and a reconstruction stage. The goal of the preprocessing
stage is to align the shapes and to learn a smart deformation prior
(local model) for each shape. The motivation comes from the fact
that plausible deformations of each shape typically lie in a low-
dimensional space, when compared with the number of parameters
in a general deformation model [Averkiou et al. 2014]. We learn
the deformation prior of each shape by performing covariance anal-
ysis over its optimized deformations to neighboring shapes. As the
deformation prior is directly learned by shapes, it inherits several
structure-preserving properties (e.g., symmetry, part structure) from
the shape collection. Essentially, we learn the local structure of the
shape space.

The reconstruction stage proceeds in three steps, where the first two
steps provide an initial solution (a set of similar shapes and an ini-
tial point cloud) and the third step optimizes this point cloud to
minimize its distance to the deformed similar shapes. Specifically,
the first step initializes a camera configuration and extracts a set of
similar shapes. This is considered as a pose estimation problem.
Although pose estimation using a single shape is hard, we found
that when a collection of oriented shapes are available, a simple
cumulative score, which sums the weighted similarity scores of the
rendered images to the input image, works remarkably well. This
can be understood by the fact that the input shapes are aligned,
and the best camera pose is voted on by all relevant input shapes
together, then the pose tends to be much more stable than those
generated from individual shapes. In the same spirit, when gener-
ating similar shapes, we combine both the image-shape distances
and shape-shape distances to generate a more robust set of similar
shapes for later steps of the pipeline.

Given the rendered images of similar aligned shapes, the second
step proceeds to initialize the depth information (z-coordinates) by
building dense correspondences between the image object and sim-
ilar shapes and transferring the depth information. Due to the dif-
ferences between the input image and 3D shapes, we observed that
it is extremely hard to obtain reliable correspondences via pair-wise
image-shape matching. However, as the input shapes are aligned,
we exploit the consistency of correspondences across the set of sim-
ilar shapes, so that we can obtain much more reliable depth infor-
mation. This is conceptually similar to state-of-the-art techniques
in data-driven shape matching techniques [Kim et al. 2012a; Huang
and Guibas 2013] to enforce consistency of correspondences along
cycles to improve quality of isolated correspondences.

Finally, in the third step we refine the camera pose and depth infor-
mation using non-rigid registration formulated as solving a contin-
uous optimization problem. The objective function combines a dis-
tance term, which evaluates the distance between the corresponding
points on the induced point cloud and the deformed similar shapes,
and two prior terms on the deformation models and the depth in-
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Figure 3: Preprocessing Stage. We learn a deformation model of
each shape via its optimized deformations to other shapes. Each
deformation model is characterized by a small set of typical defor-
mation fields (shown as vectors on model surfaces) derived from
covariance analysis. This model serves as the regularizer for the
local shape space around each shape and is enforced during the
reconstruction stage.

formation, respectively. Despite the non-linearity and scale of this
optimization problem, we show that it can be optimized effectively
using an alternating optimization strategy.

4 Preprocessing Stage

The goal of the preprocessing stage is to understand the plausible
deformations of each shape in the context provided by the input
shape collection. We achieve this goal by aligning all input shapes
and then learning a deformation prior for each shape.

Deformation model and joint shape alignment. We use the em-
bedded deformation model [Sumner et al. 2007] to parameterize the
deformation of each shape. An embedded deformation consists of
a list of control points pα ∈ J and the associated basis functions
Bα(·). Given a point x ∈ R3, its deformed counterpart is a linear
combination of the control points:

D(x) =
∑
pα∈J

Bα(x)pα. (1)

Refer to [Sumner et al. 2007] on how to construct embedded defor-
mation models on shapes. In this paper, we use 200 control points,
and hence each shape is controlled by M = 600 parameters.

To align the input shapes, we employ the method described
in [Huang et al. 2013], which jointly optimizes the deformations
of all input shapes to minimize the sum of distances between cor-
responding points computed using pair-wise alignment. We denote
the optimized embedded deformation of shape Si by D?i .

Deformation-prior learning. We assume that plausible deforma-
tions of each shape (parameterized by a vector that collects all con-
trol points) lie in a low dimensional space defined by the shape’s
neighborhood (c.f., [Ovsjanikov et al. 2011]). We learn this space
from the optimal deformations of each shape Si to other shapes,
which provide samples of plausible deformations (see Figure 3).

We directly obtain these deformation samples by composing the
absolute optimal deformations D∗i and their inverse deformations
D∗i −1. For each shape Si and each neighboring shape Sj , we
transform the original control point pα (i.e., in the rest state) of
D?i to (D?j−1 ◦ D?i )(pα). Let ci,j be the vector that collects all
transformed control points. Let c0i be the original control points.
Then each neighboring shape Sj gives rise to a deformation sample
ci,j − c0i . To learn the prior model from similar shapes, we only
consider the deformation samples from the 128 most similar shapes
to each shape, in terms of the D2 descriptor [Osada et al. 2002].

Given the deformation samples, we perform covariance analysis to
extract the principal values σ1 ≥ σ2 · · · ≥ σM and principal direc-
tions u1,u2, · · · ,uM of the deformation space. The prior model
on the deformation of each shape is given by

Prior(Di) = −
M∑
j=1

σ1

σj + ε

(
(ci − c0i )

Tuj
)2
, (2)

Intuitively, a deformation leads to a small objective value if it fol-
lows the majority of the deformation samples. Note that the shift ε
is introduced to make the prior term well-defined as we only have
limited deformation samples and many principal values are zero.

5 Reconstruction Stage

The reconstruction stage solves a joint optimization to recover the
geometry of an image object that aligns with the deformed versions
of a set of similar shapes. We begin by introducing the camera
model. Then we show how to initialize an approximate solution in
Section 5.2 and Section 5.3, and refine it to obtain the final solution
in Section 5.4.

5.1 Camera Configuration

We use a simplified nine parameter camera configuration C =
(R, t, zf , sx, sy). Here (R, t) specifies the rigid motion from the
common coordinate system Σ associated with the input shapes to
the camera coordinate system ΣC ; zf specifies the focal length;
sx and sy specify the effective size of the pixels in the horizontal
and vertical directions. Given a point q = (qx, qy, qz)

T in Σ, its
corresponding pixel coordinate p = (px, py)T is given by

px =
q′xzf
sxq′z

, py =
q′yzf

syq′z
, q′ = RT (q− t). (3)

In the other direction, given a pixel p = (px, py)T and a depth
parameter zp specifying its z coordinate in ΣC , the corresponding
point in Σ is given by

q = Rp′ + t, p′ =

(
sxpxzp
zf

,
sypyzp
zf

, zp

)T
. (4)

For convenience, we denote the map from p, zp to q as C(p, zp).

5.2 Step I: Camera Initialization

Candidate generation. Our candidate camera pose sampling strat-
egy is similar to most pose estimation algorithms [Zia et al. 2013],
which sample the viewing direction and fix the rest of the parame-
ters to default values. Specifically, we let the camera position move
on a viewing sphere centered at the origin with radius 5d, where d
is the averaged shape diameter. The rest of the parameters are fixed
as follows. The focal point t is placed at the origin. To fix R, we
let the up-right direction of the camera system lie in the plane of
the viewing direction and the z axis. Finally, we set zp = 3d, and
set sx, sy so that, on the average, each object occupies half of the
rendered image. We generate candidate camera configurations for
each shape by uniformly sampling 500 viewing directions on the
viewing sphere. Let Ccand collect all candidate camera configura-
tions. For each C ∈ Ccand, we denote ICi as the rendered image of
shape Si cropped using a tight bounding box surrounding object.

Optimal candidate. When picking the optimal candidate, we fol-
low the common strategy of evaluating rendered images by compar-
ing them with the input image. Due to differences between real im-
ages and rendered images, standard single shape based approaches



Figure 4: Camera Initialization by Voting. Left: given an image
object (the sofa in the center), we can find multiple similar shapes,
each of which independently proposes a camera pose candidate (the
blue arrow for each candidate). Note that some candidates are far
from optimal. Right: since shapes are already jointly oriented in
the pre-processing step, they can be used to more accurately vote
for the optimal pose (the red arrow).

typically require feature learning. However, we found that when a
collection of aligned shapes are present, a simple cumulative sim-
ilarity score between the input image and the rendered images is
sufficient (see Figure 4):

C� = argmin
C∈Ccand

N∑
i=1

exp(−‖f(I)− f(ICi )‖2/2σ2), (5)

where f(·) is a given feature descriptor, σ =
mini∈{1,··· ,n},C∈Ccand ‖f(I) − f(ICi )‖, and the exponential
operator is introduced to down-weight the contribution of images
that are less similar to the input image. We have various image
descriptors including GIST [Oliva and Torralba 2001], HOG [Dalal
and Triggs 2005], and the light-field descriptor [Chen et al. 2003].
Experimentally, we found that the feature descriptor that combines
all the three features together yields the best result.

5.3 Step II: Point Cloud Initialization

Given the initial camera configuration C, we generate an initial
point cloud P from I . This is done by selecting a set of simi-
lar shapes to the input image, and then establishing dense corre-
spondences between I and the similar shapes for transferring depth
information. The performance of this step is crucial since it gov-
erns the global behavior of the final reconstruction. Although both
image-based retrieval and image-image matching have been studied
considerably in the past, we found that even state-of-the-art algo-
rithms are insufficient for the purpose of transferring depth. Instead,
the key idea of the proposed approach is to utilize the regularization
provided by a collection of aligned shapes to boost the performance
in each step: i) the similar shapes extracted from matching rendered
images have to be similar with each other in the 3D space, and
ii) pixels in the rendered images of different shapes corresponding
to the same object image pixel should come from points close to
each other in the 3D space where the aligned models live. Exper-
imental results show that even with standard pair-wise techniques,
the overall performance of joint matching approaches is sufficient
for the purpose of depth initialization (see Figure 5).

Similar shape extraction. A naive approach to extract the similar
shapes is to compare the input image with rendered images (accord-
ing to the selected view) one-by-one. However, even with learned
feature similarity metrics, such an approach is insufficient due to
the diversity in lighting and texture of the input image. Since our
input shapes are aligned, we use the distances between shapes to
guide the selection of similar shapes.

Specifically, we first use the pairwise similarity score defined in (5)
to extract K0 = 32 similar shapes (i.e., an initial similar shape set).
We then build a small weighted clique graph, which consists of the

input image and the initial set of similar shapes, and use the diffu-
sion distance [Coifman et al. 2005] to sort the initial similar shapes.
The weight of each image-shape edge is given by (5), while the im-
age descriptor is replaced by the D2 shape descriptor [Osada et al.
2002] for a shape-shape edge. Given the sorted shapes, we select
the top K = 6 shapes as the final similar shape set. To simplify the
notation let the similar shapes be denoted as S1, · · · , SK .

Correspondence initialization. We initialize the image-shape cor-
respondences by matching the input image object (background is
removed) and the rendered image object ICi of each shape Si.
Given two image objects, we first apply [Munich and Perona 1999]
to build dense correspondences between silhouette curves. Treating
these correspondences as landmark correspondences, we then em-
ploy Laplacian deformation [Sorkine et al. 2004] to align I and ICi .
After alignment, we derive the initial pixel-shape correspondences
from the overlaid image objects. With Mi ⊂ I ×Si we denote the
initial correspondences from I → Si. Note that some pixels may
not have correspondences due to ‘holes’ in the shapes.

Correspondence pruning. So far we only compute the image-
shape correspondences between the input image and each shape in
isolation. A constraint that we can use to improve these correspon-
dence is to make them consistent with the optimal deformations
{D�

i } that align the input shapes. More precisely, given two cor-
respondences (p,qi) ∈ Mi and (p,qj) ∈ Mj , if the distance
between D�

i (qi) and D�
j (qj) is large, then at least one of these

two correspondences is incorrect. In addition to enforcing this con-
sistency property, we also prioritize the smoothness of correspon-
dences, i.e., given two correspondences (p,qi), (p

′,q′
i) ∈ Mi

where p and p′ are neighbors and so should be qi and q′
i, we favor

that either both of them are selected or both of them are pruned.

As both the consistency property and the smoothness prior only
involve pairs of correspondences, we formulate the correspondence
pruning step as solving a binary second-order MRF problem. We
introduce a binary random variable xc ∈ {0, 1} for each initial
correspondence c ∈ ∪K

i=1Mi, where xc = 1 if c is selected and
xc = 0 otherwise. We then define the two types of pair-wise poten-
tial functions. For each correspondence pair ci = (p,qi) ∈ Mi

and cj = (p,qj) ∈ Mj , we define a consistency potential:

φ(xci , xcj ) =

{
−∞ xci = xcj = 1,

‖D�
i (qi)−D�

j (qj)‖ ≥ δ
1 otherwise,

where δ is set as the 0.05 times the averaged shape diameter.
For each pair of correspondences c = (p,qi) ∈ Mi and c′ =
(p′,q′

i) ∈ Mi where p,p′ and qi,q
′
i are two pairs of neighboring

pixels, we define a smoothness potential function as

φ(xc, xc′) =

{
1 xc = xc′

0 otherwise.

input image similar shapes correspondences individual popup median point cloudsimilar shapes

Figure 5: Point Cloud Initialization. We start by performing
image-image matching to obtain initial dense correspondences be-
tween the input image and rendered images of similar shapes. We
then use the correspondences between shapes to prune away incon-
sistent initial correspondences. Finally, we use the rectified corre-
spondences to transfer depth information from similar shapes to the
initial point cloud.



Figure 6: Effect of point registration in 2D versus in 3D. We com-
pare the reconstructed point clouds by different strategies of point
registration between the input image and the rendered view. Left:
registration is done by measuring distance in the image domain
(2D). Right: registration is done by distance in 3D.

Then the total potential function simply sums all pair-wise potential
functions

f =
∑

(c,c′)∈P

φ(xc, xc′), (6)

where P collects all pairs of correspondences of consideration.

For optimization, we apply tree-reweighted belief propagation
(TRBP) [Szeliski et al. 2008], which is very effectively on binary
MRF problems. For convenience, we still use Mi to denote the
remaining correspondences between I and Si after this stage.

Geometry initialization. Using the dense correspondences, we
compute the z coordinate of the corresponding point of each pixel
p = (px, py) (in the camera coordinate system of C�) by averaging
z-coordinates of the corresponding points of similar shapes:

zp =
∑

(p,q)∈M(p)

q′z/|M(p)|, (q′x, q
′
y, q

′
z)

T = R(q− t), (7)

where R, t are given by C�. Note that for each pixel p that does
not belong to any correspondence, we copy the value of zp from the
closest pixel that has correspondences. We then generate the initial
point cloud P = {C(p, zp)|p ∈ I} according to (4).

5.4 Step III: Point Cloud Optimization

We refine the initial image-shape correspondences and the initial
point cloud by solving a joint alignment problem, whose objective
function minimizes the distance (defined via correspondences) be-
tween the point cloud and deformed similar shapes. We employ an
ICP-like procedure, alternating between a continuous optimization
step, which optimizes the continuous variables including camera
configuration C, the z-coordinates of each pixel {zp|p ∈ I} and
the deformation of each shape Di, 1 ≤ i ≤ K; and a discrete
optimization step, which updates image-shape correspondences.

Continuous optimization step. We consider multiple objectives
for aligning the induced point-cloud and the similar shapes. The
first term evaluates the sum of squared distances between the corre-
sponding points:

fdata =
1

K

K∑
i=1

1

|Mi|
∑

(p,qi)∈Mi

wp‖C(p, zp)−Di(qi)‖2.

Here, wp is a weight that is adjusted to be higher for more reliable
correspondence (p,qi). We set wp = 1 for interior points and
wp = 20 for points close to silhouettes. Note that another option
is to measure the distance in the image domain. However, due to
distance distortions in projection, two points that are close to each
other in the image domain may be far from each other on the origi-
nal shape. It turns out measuring the distance in the image domain
leads to far less accurate results (see Figure 6).

As fdata considers each pixel independently, we next introduce a
second term to regularize the z-coordinate of neighboring pixels:

fregu =
1

|N |
∑

(p,p′)∈N

(zp − zp′)
2.

Finally, the third term applies the key deformation priors learned in
the preprocessing stage:

fprior =
1

K

K∑
i=1

prior(Di).

Combining fdata, fregu, and fprior, the energy minimization problem
in the continuous optimization step takes the form:

min
{zp},C,{Di}

fdata + λrfregu + λpfprior. (8)

In our experiments, we use throughout the same set of parameters:
λr = 0.01 and λp = 1.

We again apply alternating optimization to effectively optimize (8).
In each step, we first fix the z-coordinates zp to optimize the camera
configuration C and the shape deformations Di:

min
C,{Di}

fdata + λpfprior . (9)

We then fix C and Di to optimize the z-coordinates zp:

min
{zp}

fdata + λrfregu . (10)

The key advantage of this alternating optimization strategy is that
(9) and (10) are either sparse (constraining neighboring pixels) or
of small-scale (camera configuration and deformation parameters).
This enables us to apply second-order Newton methods to optimize
them effectively, i.e., we solve a sparse or a small-scale linear sys-
tem at each Newton iteration. As the objective terms consists of
non-linear least squares, we apply a Gauss-Newton method for op-
timizing Equations (9) and (10). The derivation is quite standard
and we omit the details.

Discrete optimization step. Given the optimized point-cloud P =
{C(p, zp)|p ∈ I} and deformed shapes, we proceed to optimize
the image-shape correspondences. We first convert each deformed
shape Di(Si) into a point-cloud S′

i by simulating a scan from the
current camera configuration. We then initialize Mi to collect clos-
est point-pairs

Minit
i = {(p,q)|q = argmin

q′∈S′
i

‖p−q′‖ or p = argmin
p′∈P

‖p′−q‖}.

As there may only exist partial similarity between the image ob-
ject I and each shape Si, we adopt the median thresholding
scheme [Rusinkiewicz and Levoy 2001] to remove correspondences
that are far from each other, leaving

Mi = {(p,q)|‖p− q‖ ≤ 2σi, (p,q) ∈ Minit
i },

where σi is the median of ‖p − q‖ among each Minit
i . Figure 8

shows an example of the non-rigid alignment process. In practice,
only 4-6 alternating updates are sufficient for good results.
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Figure 7: Representative Results. We have evaluated our approach on five categories of objects. This figure shows representative results
in each category. For every object we show the input 2D image, the extracted similar shapes, the reconstructed point cloud and finally the
ground truth Kinect scan.
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Figure 8: Intermediate Optimization Results. We employ an itera-
tive scheme to simultaneously refine point cloud reconstruction and
to deform similar shapes. This figure shows the image view (rows
1 and 3) and side view (rows 2 and 4) of the point cloud and the
deformed shape in different iterations. Since strong and reliable
constraints are imposed along the silhouette of the estimated image
view, the results look correct from the original image view at the
initialization step. However, the interior of the point cloud is ini-
tialized poorly, as can be observed from the side view. When the op-
timization proceeds, significant improvement can be observed from
the side view as the shape deformation subspace prior from similar
shapes regularizes the solution and “propagates” the information
to the otherwise under-determined interior regions.

6 Evaluation

We evaluated the proposed shape-driven image-based modeling on
various Kinect scans with associated color information.

6.1 Experimental Setup

Images. We consider five categories of objects: chairs, tables, cups,
lamps and cars. Each category consists of 4-6 Kinect scans of ob-
jects with different shapes. Figure 7 shows representative results
in each category. We assume all the objects are captured in our
standard setting, where background is easy to remove. The Kinect
scans are for evaluation purposes only.

Shapes. The 3D shapes are from Trimble warehouse. Each cat-
egory contains 2K-7K shapes (see Table 1), where the Chair data
set is from [Kim et al. 2013], the Car data set is from [Huang et al.
2013], and the three remaining datasets were collected using a sim-
ilar strategy to that described in [Kim et al. 2013]. Note that even
with thousands of shapes, the shape space is not densely covered as
can be seen from the extracted similar shapes (see Figure 7).

Evaluation protocol. We evaluate the reconstructed point-cloud
of each object image against the Kinect depth scans. To factor out
the free scaling degree of freedom we first compute a similarity
transform that aligns the reconstructed point cloud with the Kinect
scan. Given the calibrated reconstruction P and the Kinect scan
PKinect, we propose two metrics to evaluate the quality of P . The
first metric evaluates the Hausdorff distance between P and PKinect:

d(p,PKinect) = minq∈PKinect ‖p− q‖, ∀p ∈ P.

The second metric evaluates the deviation between the pair of cor-
responding points p and f(p) in P and PKinect:

d(p, f(p))) = ‖p− f(p)‖, ∀p ∈ P.

Table 1: Statistics on various datasets. Shapes are normalized to
have diameter 1. ε∗ and σ∗ are the mean and standard deviation
of the metrics defined in Sec 6.1. εbs

∗ and σbs
∗ are the numbers for

the best matched single shape and those with no superscript are
numbers by our algorithm.

#shapes εbs
haus/σ

bs
haus εhaus/σhaus εdeviation/σdeviation

Chair 7.3K 0.17 / 0.15 0.05 / 0.03 0.11 / 0.10
Table 4.2K 0.14 / 0.12 0.06 / 0.06 0.12 / 0.13
Cup 1.1K 0.15 / 0.11 0.05 / 0.04 0.09 / 0.09

Lamp 2.0K 0.13 / 0.15 0.06 / 0.03 0.10 / 0.11
Car 1.7K 0.12 / 0.11 0.05 / 0.03 0.09 / 0.08

It is clear that the Hausdorff distance is invariant to interior drifting
on the surface, while the correspondence deviation is more strict.
For each distance metric we collect statistics on the mean and vari-
ance of d(p,P) over all points (see Table 1). As a baseline, we
calculated the Hausdorff metric obtained by the most similar shape.

6.2 Analysis of Results

Table 1 and Figure 7 shows representative results for the proposed
approach. Overall the results are reasonably good despite the obvi-
ous difficulty of the problem, with 68.2% correspondences falling
below 0.02 times the averaged shape diameter. For all datasets,
the Hausdorff distance error is considerably lower than that of the
deviation error. As the shape of the point cloud is driven by the
shape collection, this shows that using the shape collection as a
good prior, the distribution of points is restricted to drift along the
common shape space. The deviation error is large because the cor-
respondences may glide along the shapes, which are not exactly the
same. We next discuss the results for each category.

Chair and tables. We evaluate on the chair and table categories
because fine geometric details are present in these shapes. Like
other man-made objects, chair and tables usually have strong sym-
metries, implying a lower-dimensional deformation space. On the
other hand, the four legs may introduce matching ambiguities. On
these categories, we find that our algorithm is limited when self-
occlusion presents: the lower board is occluded by the front leg in
Row 6 of Figure 7 and consequently part of it is attached to the leg.

Cups. Cups are relatively small household items and usually have
a circular symmetrical body. Interestingly, our method produces
visually more pleasing results compared with the Kinect, because
the object size is reaching the resolution limit of the sensor and
the surface is specular, which is challenging for the structural light
mechanism of the Kinect.

Lamps. We choose this category because it has large variations
in the possible shapes, particularly in the curvature of the pole. It
can be seen that our algorithm succeeds in both lamp examples in
Figure 7. The success can be attributed to two reasons. First, we use
a data-driven approach to implicitly combine parts from different
shapes. Second, we use a non-rigid deformation field, which allows
the bending of the pole.

Cars. We choose this category as a common outdoor object having
fine geometric details (e.g., wheels, side mirrors). Our algorithm
could accurately estimates the depth of cars. On the other hand,
the Kinect has problems in detecting windows and wheels, because
they are too reflective or too dark respectively.

Comparison to Automatic Pop-Up. Automatic Pop-Up [Hoiem
et al. 2005] automatically reconstructs 3D information using a sin-
gle image and was initially designed for outdoor scenes using plane
classifiers. The software assumes simple geometric priors and tend
to work poorly for complicated indoor objects with thin and fine
features. We show the effect of Automatic Pop-Up on a chair model
in Figure 9 using the pre-trained classifiers. Our algorithm is visu-



Figure 9: Comparison with Automatic Pop-Up [Hoiem et al.
2005]. That algorithm fails to recover the delicate geometric struc-
ture of the chair legs and produces unnatural 3D effects.

ally significantly better than the output from this software (compare
the last column of Figures 2 and 9).

6.3 Discussion

Image-Shape matching versus Image-Image matching. Image-
image matching is far less accurate than image-shape matching
(Figure 6). Two reasons accounts for the difference. First, the
projection from 2D to 3D is perspective and two points close in
2D may be far away in 3D. Second, a 3D point cloud for a shape
is obtainable in our setting and projecting it to 2D loses important
information. In fact, strong perspective projection might still hurt
the performance of our algorithm. For example, the seat of the
second row in Figure 7 is estimated to be very thick, which can be
attributed to very strong perspective effect close to the chair leg.

Deformation prior is important. We find that our deformation
shape prior is key to success. As illustrated in Figure 3, the defor-
mation space is low-dimensional and points are generally restricted
to move parallel to meaningful axes or scale in a coordinated man-
ner. Thus, such constraints makes sure that the local deformation
maintain global symmetries. Evidently, in Figure 10, because the
problem of single image depth reconstruction is intrinsically under-
determined, poor results are obtained without a prior (top). On the
contrary, the isotropic symmetry learned by the prior ensures that
the deformation subspace has only 1D, which is a coordinated scal-
ing around the y-axis.

Timing. All experiments were conducted on a standard desktop
platform with a 2.4GHz Intel Core 2 Duo-core and 12GB of RAM.
For each category, the pre-processing stage is shared by all images,
which takes 3507s for chairs, 2184s for tables, 516s for cups, 1223s
for lamps and 1109s for cars. The camera initialization stage takes
on average 0.3s for each input image, and most of the time was
spent on extracting image features. For each image object, the point
cloud initialization stage took ∼7s in average, with ∼1s on corre-
spondence initialization and ∼ 6s on correspondence pruning. The
point cloud optimization stage took ∼ 25s in average. The total
running time for processing an image object was ∼ 33s.

7 Applications

In this section, we use a series of applications to show the useful-
ness of the reconstructed point cloud, including relighting image
object, synthesizing unseen novel views, and depth-aware image
composition. In the end, we show that, in some situations, a rea-
sonable full mesh of an image object can be recovered using our
point cloud as input, by exploiting shape symmetries.

Relighting. Given an image, we estimate the depth of each pixel
and use local PCA analysis to estimate normals and simulate the
lighting effects under different illumination conditions. In Fig-
ure 11, we assume an ambient light and a diffusion reflection on the
surface. Notice that the synthesized image is almost photo-realistic,

Figure 10: Effect of Deformation Prior. For a circular symmetric
cup, the top/ bottom row shows the results without/with the prior.
We see that the deformation prior guarantees the reconstruction is
circularly symmetric.

except some artifact at the top-right corner due to inaccurate depth
estimation.

Novel View Synthesis. Since the full 3D information for each
pixel is available, we can simulate the movement of the camera in
3D and synthesize novel views. In Figure 12, the synthesized view
from our depth estimation using the inverse warping method [Mar-
cato Jr 1998] is almost photo-realistic. In particular, as we can even
accurately recover the depth information of the back mirror of the
car, the appearance around the back mirror is quite natural when
the car is rotating in the counter-clockwise direction (-30 and -15
deg). Note that the missing parts that are invisible in the image can
possibly be recovered by exploiting model symmetry.

Depth-Aware Image Composition. In Figure 13 we demonstrate
an experiment in which we compose a 3D model of a woman with
a sofa image, so that the woman is ‘sitting’ on the sofa. A cor-
rect composition should make sure that the woman’s body and legs
cover the back arm, and her hip is covered by the front chair arm.
Since the depth of the sofa can be recovered, we can compute this
correct occlusion for each pixel (right), as opposed to unnatural oc-
clusion patterns if no depth information is available (left).

Symmetry-based Surface Reconstruction. The inferred point
cloud only has points visible from the camera view. However, we
show in this experiment that it is a key intermediate step towards
full 3D model reconstruction. We hallucinate the missing parts
by exploiting the model symmetry. We use [Mitra et al. 2006] to
extract symmetry patterns from similar shapes and transport them
to the point cloud. In Figure 14, we discover a circular symme-

Figure 11: Relighting. Using the inferred depth information, we
can build the normal map and simulate different lighting condi-
tions. Leftmost column is the input image and the three columns on
the right are the simulated illumination. A directional light source
moves from left to right (top row), or up to down (bottom row).
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Figure 12: Novel View Synthesize. Simulated images by rotating
cameras around the y-axis.

try for the cup body and a plane symmetry for the handle, which
also induces a segmentation of the cup. Thus, we can transport the
symmetry parameters and achieve full shape recovery using [Mitra
et al. 2007]. Finally, we apply Poisson reconstruction [Kazhdan
et al. 2006] on the extracted point cloud for surface reconstruction
with smoothing. The final result is in the bottom row of Figure 14.
We see that the reconstructed mesh generally looks natural from
all views. However, because we only apply plane symmetry at the
handle part, there is gap at the bottom of the handle and the re-
constructed surface is not connected. Discovering better structural
predictors to close the small gap is an interesting open problem for
further exploration.

8 Conclusion and Future Work

In this paper, we have presented a data-driven algorithm for adding
depth information to an image object. The algorithm takes as input
an image of a segmented object and a collection of 3D shapes of
the same object class, and computes various geometric priors from
the shape collection to optimize the depth estimation of the image
object. This procedure is fully automatic. We have evaluated the
performance of the presented approach on a benchmark that con-
sists of Kinect scans of a variety of common objects taken under
different lighting conditions. Experimental results show that our
approach produces depth that is close to the ground-truth, and is
superior to state-of-the-art depth estimators. We have also shown
the usefulness of the our approach for various applications.

Figure 13: Depth-Aware Image Composition. Image composition
may be tedious as direct overlay may lead to incorrect occlusions
(Left). Given an image of a sofa and a 3D model of a sitting woman,
occlusions between them can be correctly computed based upon the
depth inferred by our algorithm (Right).

Figure 14: Symmetry-based Completion and Surface Reconstruc-
tion. Top: point clouds viewed from different angles. Bottom: sur-
face reconstruction results with symmetry-based completion. Orig-
inal image is from the third row of Figure 7.

Besides the applications demonstrated in this paper, the presented
depth estimator enables a variety of other applications in both com-
puter graphics and computer vision. As an example, the shape col-
lection can serve as the hub that links many image objects. This
is particularly useful for retrieving similar image objects that were
taken from drastically different view points that cannot be matched
well by pure image methods. As another example, with the help
of the image-shape network, we can propagate rich image labels
for the purpose of categorizing shapes — a challenging problem in
shape analysis due to the lack of labeled shapes or of data combin-
ing 3D shapes and labels.

Limitations. Of course, as stated, our approach requires a seg-
mented image of an object and a knowledge of the object class.
These are well studied problems in computer vision and future work
can combine these with our approach.

The presented method works best with man-made objects whose
3D models can be well aligned and where the variation in shape
poses is modest. It does not apply well to objects of high variabil-
ity, such as trees, or buildings, or of high articulation, such as ani-
mals. For these objects, it is important to utilize more specialized
domain knowledge (i.e., skeletons and regular structures) to estab-
lish correspondences and estimate depth. Finally, in our experience,
a minimum of a couple of hundreds of shapes is necessary for the
algorithm to succeed. The intuition is that each part of the object
in the image needs to have multiple correspondences for good reg-
ularization.

Future work. There are ample opportunities for future research.
While so far we have focused on estimating the depth of a single
segmented object, it would be very interesting to generalize this ap-
proach to estimate the depth of an entire scene. This would require
us to automate the object detection process and to take into account
spatial relations among objects.
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