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Figure 1: Meta-representations of two families of shapes, where we show one selected probability distribution from each representation.
Here, we see the distribution for the angle between the main axes of airplane wings and fuselage, and the angle between the main axes of
chair backs and legs. Note that the main axes are oriented to the same direction, implying that two orthogonal parts form a zero angle. There
are two major modes in each distribution, where examples of shapes corresponding to the black dots are shown. Besides such exploration, the
meta-representation can also be used for applications like guided editing: the user deforms selected shapes, taking them to lower probability
states (red dots), and then the system, guided by the meta-representation, returns the shapes to higher probability states (green dots).

Abstract

We introduce a meta-representation that represents the essence of a
family of shapes. The meta-representation learns the configurations
of shape parts that are common across the family, and encapsulates
this knowledge with a system of geometric distributions that encode
relative arrangements of parts. Thus, instead of predefined priors,
what characterizes a shape family is directly learned from the set of
input shapes. The meta-representation is constructed from a set of
co-segmented shapes with known correspondence. It can then be
used in several applications where we seek to preserve the identity
of the shapes as members of the family. We demonstrate applica-
tions of the meta-representation in exploration of shape reposito-
ries, where interesting shape configurations can be examined in the
set; guided editing, where models can be edited while maintaining
their familial traits; and coupled editing, where several shapes can
be collectively deformed by directly manipulating the distributions
in the meta-representation. We evaluate the efficacy of the proposed
representation on a variety of shape collections.
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1 Introduction

High-level shape analysis goes beyond low-level analysis of the ge-
ometric properties of shapes and attempts to extract higher-level se-
mantic information to aid in shape manipulation [Mitra et al. 2013].
As part of this effort, single shapes, particularly man-made objects,
have been analyzed to extract semantic relations that can be made
useful in various applications. One example is in applying con-
straints on a shape editing process, thereby achieving an intelligent
edit where the prescribed geometric characteristics of the manip-
ulated shape are preserved [Gal et al. 2009; Xu et al. 2009; Li
et al. 2010; Zheng et al. 2011]. Ideally, the aim is to understand
the essence of the family of shapes directly from their object geom-
etry, in order to use this knowledge in the applications to determine
the geometric shape and configuration of shape parts.

Analyzing an individual shape, however, is inherently limited as
we are looking at a single example from a specific class of shapes.
It is difficult to understand what really characterizes the family of
the shape without additional information or other examples from
the same class. Humans typically rely on their prior knowledge to
infer this information. Hence, with the growth of shape repositories,
researchers have focused on co-analyzing sets of shapes in order to
benefit from the collective information in the group [Kalogerakis
et al. 2010; Huang et al. 2011; Sidi et al. 2011; Wang et al. 2012;
Kim et al. 2013]. However, the typical outcome of these methods,
a segmentation and/or correspondence, does not really summarize
properties that define the shapes as elements of a set.

Starting from a set of co-segmented shapes, we create a representa-
tion that captures the essence of the shape family, towards the goal
of quantifying validity of the shapes. We call this representation
a meta-representation. Specifically, we learn a system of geomet-
ric distributions to encode relative arrangements of parts across the
family. Note that our representation is complementary to the one
proposed by Kalogerakis et al. [2012] who learn a Bayesian net-
work to capture co-occurrence statistics of parts for the purpose of
shape synthesis. Instead, we focus on the distribution of part ar-
rangements as learned from a collection of shapes. For example, in
the case of a family of planes, we discover that there are two main
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modes for the angle between the wings and fuselage (see Figure 1).

The meta-representation can then be used in a wide array of ap-
plications where one seeks to preserve the familial identity of a
manipulated shape. Essentially, instead of assuming generic pri-
ors on allowed deformations (e.g., as-rigid-as-possible deforma-
tion [Sorkine and Alexa 2007]) or semantic relations (e.g., parallel
or orthogonal part configurations being preferred [Gal et al. 2009;
Zheng et al. 2011]), we directly use the representation to determine
likely arrangements of parts. As our main application, we use the
meta-representation to guide the editing of a shape to ensure that
it remains a valid element of the set by keeping its main geomet-
ric characteristics. Thus, a desirable deformation amounts to refin-
ing part geometries and positions to increase validity as quantified
by the meta-representation. The meta-representation then provides
such guidance. In practice, this is realized by an editing tool that
constrains parts to a valid space as the shape is edited.

Furthermore, by summarizing the input shape family, the meta-
representation can also be used for exploring the set of shapes. In
addition, it provides a collective handle to simultaneously refine a
collection of shapes. For example, the user can directly edit the
system of distributions, while our system adjusts the input shapes
according to the prescribed meta-representation. This leads to a
novel and intuitive coupled editing tool for sets of shapes.

We evaluate the proposed representation on various datasets and
demonstrate the advantage of having such a meta-representation
both for analyzing and manipulating shape families.

2 Related Work

In this section, we first discuss the works directly related to the
concept of a meta-representation of a family of shapes. Then, we
examine the relevant works in shape editing and synthesis.

Analysis of families of shapes. With the growing abundance
of 3D shape collections, many approaches have been proposed to
analyze families of shapes to benefit from the collective informa-
tion. The majority of these works focus on consistently segmenting
sets of shapes using a range of strategies including spectral clus-
tering [Sidi et al. 2011], linear programming [Huang et al. 2011],
active learning [Wang et al. 2012], subspace clustering [Hu et al.
2012], multi-label optimization [Meng et al. 2013], template fit-
ting [Kim et al. 2013], etc. A few others have focused on extracting
a consistent hierarchy for the set [van Kaick et al. 2013], or consis-
tent part arrangements [Zheng et al. 2014] from an input family of
shapes. Other works have focused on the exploration of shape sets,
for example, by using a template that when deformed allows to in-
directly navigate the shape space [Ovsjanikov et al. 2011], or by
directly parameterizing the template space [Averkiou et al. 2014].
Although describing shapes with templates has similarities to our
work, the models used in these works do not capture the relative
orientation of parts and are not applied to interactive editing.

The question of how to exactly extract and encode a representation
that captures the essence of a shape family, however, has not yet
been thoroughly investigated. The works more closely related to
this idea are those of Chaudhuri et al. [2011] and Kalogerakis et
al. [2012]. Inspired by earlier efforts to represent shapes as parts
and their connections [Funkhouser et al. 2004], they used a part-
based representation as the basis for learning probabilistic models
to describe shape families. Specifically, the models represent topo-
logical information such as the likelihood of the presence of certain
parts and the cardinality of these parts, and the existence of certain
shape styles according to the topology and geometry of the shapes.
The models can be used to synthesize new shapes, but parts are
placed with an automatic procedure. While our model is also based

on a part-representation, we instead focus on the geometry of the
part configurations. We learn the relative positioning and appear-
ance of shape parts that is typical for a family of shapes. Thus, our
work complements the more topological models of previous work.

Shape editing. In the context of organic shapes, several methods
have been proposed to facilitate 3D shape editing (see [Botsch and
Sorkine 2008] for a survey). Both surface-based and volume-based
methods have been proposed to preserve local geometric details in
the course of shape deformation.

In the context of man-made shapes, high level shape editing has
been pursued. Realizing this goal amounts to detecting relation-
ships between shape parts or features, and using these relationships
to constrain the shapes during editing, referred to as the analyze-
and-edit approach. For example, Xu et al. [2009] use slippable
motion analysis to detect joints on the shapes, which can then be
used as articulations to deform the shapes; Gal et al. [2009] detect
feature curves (wires) on the objects, whose spatial relationships
are preserved when deforming the shape; Li et al. [2010] intro-
duce arterial snakes as feature curves used to deform 3D shapes
that are inherently 1D, while Zheng et al. [2011] propose instead
to use spatial controllers (similar to cages) placed on shape parts as
the primitives for editing. In a different context, Lin et al. [2011]
propose an analyze-and-edit approach for retargeting of 3D archi-
tecture, where the input models are analyzed and decomposed into
a set of 1D structures that are easier to retarget.

These works can be seen as part of the larger group of structure-
aware approaches, as the relationships that are captured typically
seek to preserve the structural properties of the shapes (c.f., [Mitra
et al. 2013]). However, in the shape editing approaches discussed
above, structure is typically learned from a single shape, and not
inferred from a set of shapes as is our goal in this work. Detecting
structural relationships between multiple components is also impor-
tant in other domains: Fisher et al. [2011] detect relationships be-
tween objects in scenes to perform scene or object retrieval; Yumer
and Kara [2012] produce identity preserving mutually consistent
coabstractions for shape collections; while Shtof et al. [2013] apply
the structure-aware principle to sketch-based modeling. Differently
from these works, Sumner et al. [2005] deform a mesh with inverse
kinematics according to example deformations. Although the mesh
is deformed based on external input, the user is responsible for pro-
viding the appropriate examples that guide the deformation.

Shape synthesis. There has also been work on automatically
synthesizing novel shapes by creating variations from a set of
base shapes, so that the user does not have to directly edit the
shapes. These approaches typically combine parts from different
shapes [Funkhouser et al. 2004], e.g., according to probabilistic
inference [Kalogerakis et al. 2012], by exploiting partial symme-
try [Bokeloh et al. 2010], through an evolutionary approach [Xu
et al. 2012], by capturing the functionality of part structures [Zheng
et al. 2013], or by directly navigating shape space manifolds implic-
itly defined by constrained surfaces [Yang et al. 2011]. Neverthe-
less, as discussed before, these approaches rely on probabilistic or
symmetry-based models that mainly capture topological and style
information about the shapes. We go beyond such models to also
capture geometric relationships between parts.

3 The Meta-representation

In this section, we describe the meta-representation at a high-level.
In the subsequent sections, we give details on its construction and
how it can be used for different applications.



Figure 2: Part abstraction: given the segmented and labeled
shapes in (a), we compute the convex hull of each part (b), and
then use the hulls to extract an OBB for each part (c), while also
consistently ordering the OBB axes across different shapes.

Assumptions about the input. We assume that the input shapes
are coming from the same family and are pre-segmented and consis-
tently labeled. That is, the label of each shape segment is taken from
a pre-defined set of labels that are relevant to the particular family.
We follow this assumption both for the training set that defines the
meta-representation and those shapes that are handled by the ap-
plications (which may not be part of the training set). Several un-
supervised algorithms exist to automatically obtain such a labeled
segmentation from an input set of shapes [Sidi et al. 2011; Huang
et al. 2011; Hu et al. 2012; Meng et al. 2013; Kim et al. 2013; Laga
et al. 2013], as well as semi-supervised algorithms [Wang et al.
2012]. Note that most of these algorithms automatically segment
the shapes and assign generic labels. The user can then assign se-
mantic names to the labels.

Next, each shape part is represented as an oriented bounding box,
and we compute a set of relations for the boxes. The relations are
functions that capture geometric configurations of the boxes and
they can be unary, capturing the appearance of a single box in rela-
tion to the entire shape, and binary, capturing the relative position-
ing and appearance of a pair of boxes. The purpose of the relations
is to capture any consistency of geometric configuration between
the parts across the input shapes. The box representation and the
relations that we compute are described in detail in Section 4.

The meta-representation. The goal of the meta-representation
is to capture the essence of a specific family of shapes in terms of
the geometric relationships between their shape parts. The meta-
representation can then be used to estimate whether the parts of an
unknown shape are in a typical arrangement for the family of shapes
in question. Thus, it is natural to encode the meta-representation as
a probabilistic model of the relations. In our work, we encode it as a
probability density function (PDF) independently for each relation,
and associate the PDFs to the part labels. Then, given parts with
respective labels, we can query the PDFs to infer the probability of
the part configuration. Figure 1 shows an example.

More formally, given a set of labels L := {l1, . . . , lm}, and a su-
perset of relations R := {R1, . . . , Rn}, divided into sets of unary
relations U := {Ui} and binary relations B := {Bj}, the meta-
representation encodes a PDF for label li and unary relation Uk:

PDFli,Uk (r) : R→ R, (1)

and a PDF for every pair of labels {li, lj} and binary relation Bk:

PDFli,lj ,Bk (r) : R→ R. (2)

The collection of PDFs can be used to estimate the probability of
a specific value r ∈ R for any relation Rk. They can be learned
from the observed relation values extracted from a training set, as
explained in Section 4, and used for different applications, as dis-
cussed in Section 5.

Figure 3: (a) Given a pair of parts represented as two OBBs with
their axes colored in red, green, and blue, illustrated in 2D in (b),
we compute a set of binary relations that describe their relative ar-
rangement. In this work, we consider: (c) SCALE relations, (d) AN-
GLE relations, and (e) CONTACT relations.

Complexity of learning the model. Our main assumption when
designing the meta-representation is that the relations and labels are
statistically independent, implying that we learn a PDF separately
for each relation and individual or pair of labels. Such a simplified
model is unable to capture any correlation that may exist between
the relations. For example, the angle between the front wing and
fuselage of an aircraft may be strongly tied to the angle between
the fuselage and stabilizer of the aircraft, characterizing the style of
the aircraft as a fighter jet or a passenger airplane. However, learn-
ing such a model involving correlations between all relations would
require a great amount of training data (on the order of thousands
of shapes), since otherwise outliers can easily bias the learning.

Nevertheless, our simplified model, which encodes only unary and
pairwise relations while ignoring their correlation, makes it easy to
learn a more robust model from much smaller training sets (only
hundreds to dozens of shapes, which is common in many reposito-
ries). It is also more space- and time-efficient, allowing us to obtain
a quick assessment of the likelihood of a part configuration. How-
ever, this comes at a cost: the meta-representation can sometimes
lead to conflicts and contradictory constraints. We handle such er-
rors by looking for a solution where we recover correlation by con-
sistency of the pairwise relations (see Section 5). In summary, our
design choice makes the representation and leaning simpler, albeit
at the cost of a more involved framework for applications.

4 Learning the Meta-representation

The meta-representation is learned from a training set of shapes
from the same family S := {S1, . . . , Sn}. As a pre-processing
step, the shapes are all normalized to the unit sphere, consistently
segmented and aligned. First, an abstracted representation is com-
puted for each shape part (Figure 2). Next, a set of relations is
computed for every individual part and between every pair of parts
(Figure 3). Finally, a statistical model that describes the relations is
learned. We now discuss these steps in detail.

Part abstraction. Each input shape Si is pre-segmented into a
set of parts Pi := {P i1 , . . . , P im}. Note that some shapes may
not have all the parts (e.g., a chair may not have arms). We repre-
sent each shape part P ij of a shape Si as an oriented bounding box
(OBB). The OBB for part P ij is described by its center cij , three
axes (aij,1,a

i
j,2,a

i
j,3), and the extents (eij,1, e

i
j,2, e

i
j,3) of the axes.

In order to extract an OBB for a part, we build a set of candidate
OBBs and select the one that better captures the symmetries of the
part. This method yields more meaningful results than other ap-
proaches we experimented with, such as principal component anal-
ysis (PCA), or selecting minimum volume boxes.

The construction works as follows: We first compute the convex
hull of the part’s vertices. Each of the faces of the convex hull
defines a plane onto which we project all the vertices of the hull.



Next, we compute the 2D bounding box (with minimum area) of
the projected vertices [Schneider and Eberly 2003], and extrude the
bounding box by following the direction of the plane’s normal until
we reach the most distant vertex of the hull. This defines a candidate
OBB. Finally, we choose the candidate with the maximum number
of reflective symmetry planes.

To test whether any of the three planes defined by the center cij
and the axes (aij,1,a

i
j,2,a

i
j,3) possesses a reflective symmetry, we

uniformly sample points on the surface of the part and reflect them
across the potential symmetry plane. We then measure the distance
of the reflected points to the surface. If a sufficient fraction (> 0.9)
of the reflected points is closer than a threshold (0.0001), we mark
the corresponding plane as a reflective symmetry plane. If there
is more than one box which maximizes the number of symmetry
planes, we break tie by selecting the one with the minimum volume.
If none of the candidate boxes have symmetry planes, the smallest
volume box is selected. Note also that, similar to [Zheng et al.
2011], we detect parts with rotational symmetry and mark them as
special primitives with only one meaningful (rotation) axis.

Consistent axes ordering. To ensure that the axes of part boxes
are consistently ordered across different shapes, we assume that all
the shapes have the same upright orientation and face the same
direction. We sort the OBB axes so that they best align with the
global shape axes. Specifically, the first axis is set as the one that
best aligns with the global x-axis, and the second axis as the one
that best aligns with the y-axis and is orthogonal to the first chosen
axis. This procedure ensures a consistent ordering for the majority
of shapes. We manually override the automatic fix when the ori-
entation is not consistent. However, due to the regularity of part
arrangements in the selected sets, we only needed to fix the orien-
tation for two shapes. An example of the part abstraction and axes
ordering is shown in Figure 2. The consistent ordering leads to a
meaningful representation of relations, as described next.

Inter-part symmetry. A shape may contain multiple parts with
the same label and in many cases these parts are reflectively sym-
metric. In order to detect reflective symmetry between two parts
with the same label, we employ a variant of the reflective symmetry
detection described above. Here, the candidate plane is simply that
given by the vector connecting the two centers of the parts along
with the half-way point between the centers.

Part relations. Given a shape Si, we compute a set of unary re-
lations for every part Pj and a set of binary relations between every
pair of parts (P ij , P

i
k). We define a set of relations to describe the

geometric configuration of the shape parts. In our work, we choose
unary relations that capture mainly the extent of each part axis rel-
ative to the scale of the entire shape:

EXTENTS(P ij ) := {eij,t/di}, ∀t = 1 . . . 3, (3)

where di is the diagonal of the bounding box of shape Si.

The binary relations capture relative rotations, translations and
scales between parts (illustrated in Figure 3):

SCALES(P ij , P
i
k) := {eij,t/eik,u}, ∀t = 1 . . . 3;u = 1 . . . 3,

ANGLES(P ij , P
i
k) := {∠(aij,t,aik,u)}, ∀t = 1 . . . 3;u = 1 . . . 3,

CONTACTS(P ij , P
i
k) := {tij,1, tij,2, tij,3, tik,1, tik,2, tik,3},

(4)
where tij,m = 2‖vj‖ cos(∠(vj ,aij,m))/eij,m

with vj = pint(P
i
j , P

i
k)− cij .

Essentially, the contact relation between parts (P ij , P
i
k) is repre-

sented as the relative placement of the intersection point between

Figure 4: Bandwidth selection to create the kernel density estima-
tor (KDE): (a) Automatic selection with our criterion (red bars are
training values). (b) Small bandwidth: note how there are many
modes and gaps. (c) Large bandwidth: a single mode is created.

their two boxes (pint), in the scaled coordinate system of P ij and of
P ik. The intersection point, if it exists, is found by forming a grid
of points on the frame of each box and testing containment of each
grid point within the other box. We set pint to be the average of the
set of points which are found to be contained.

Note that the chosen set of relations is redundant and may over-
constrain the configuration between two boxes. The redundancy,
however, helps towards more robust estimation.

Probability density function. As outlined in Section 3, we col-
lect the relations for individual boxes and between pairs of boxes
for all the shapes in the set, and then build the PDFs for unary
(PDFli,Rk ) and binary (PDFli,lj ,Rk ) relations. Each PDF is effec-
tively represented by a 1D kernel density estimator (KDE) [Silver-
man 1986]. Kernel density estimation is a standard non-parametric
technique for estimating the PDF of a random variable, and repre-
sents the density as a sum of kernels g, each centered at one training
sample (one relation value) xl ∈ X:

KDE(r) :=
|X|∑
l=1

g(r − xl, h)/|X|, (5)

whereX is the entire set of training samples, and h is the bandwidth
of the kernel. For our model, we use the common Gaussian kernel:

g(t, h) := exp(−t2/2h2)/
√
2πh2 with t ∈ (−∞,∞).

Selecting an appropriate kernel bandwidth is an important prob-
lem, illustrated in Figure 4. If the chosen bandwidth is too small, as
shown in (b), the distribution does no generalize well, and several
modes and gaps exist in the density function. If a large bandwidth
is selected, as in (c), then important low probability regions are
smoothed out in the distribution. Finally, with the correct band-
width, as in (a), a more meaningful distribution with three large
modes is created.

In our work, the bandwidth h is set based on a fixed scale parameter
relative to the range of data in the distribution:

h := σ · (perc95X − perc5X) , (6)

where perc5 denotes the 5th percentile ofX , and the scale σ = 0.05
was determined experimentally. Using the percentiles instead of the
full data range makes the selection more robust by ignoring out-
liers. This criterion works well in practice when compared to other
well-known alternatives such as cross-validation with the mean in-
tegrated squared error or rules of thumb [Chiu 1996]. These criteria
are more suitable for finding a cluster structure in the data, and tend
to separate the distribution into several modes. On the other hand,
our criterion based on a scale parameter allows us to select the ap-
propriate level of detail so that the distributions generalize well.

In general, note that the PDFs capture the commonality of the data
in terms of the frequency of values. In regions of the KDE with a
large number of training samples, the sum of Gaussians will create



peaks with high function values, spread according to the variance
of the samples, while regions with only a few samples will have
lower function values. Thus, since the KDE represents a continu-
ous density function, the area under the curve corresponds to the
probabilities. In practice, to extract a probability p(r) for a specific
value r, we integrate the function around a small ε-interval of r:

p(r) :=

∫ r+ε

r−ε
KDE(r) dr. (7)

In our implementation, we set ε = 0.01 of the range of values in the
PDF. Note that the probabilities cannot be easily used in an absolute
sense, as they will be influenced by the structure of modes in the
distribution. However, they can be used in a comparative manner,
to compute the probability gain after changes to the relations.

5 Using the Meta-representation

In this section, we discuss different usages of the meta-
representation. The representation, which summarizes the input
shape collections, can be directly used for finding interesting shape
configurations in the collection, reshaping any input model guided
by the meta-representation, or for collectively editing all the input
shapes by directly manipulating the meta-representation.

5.1 Exploration of shape families

Given the set of PDFs that define the shape meta-representation, we
developed a tool for exploring interesting shape clusters closely tied
to the configurations of certain parts. The motivation behind this is
that any relation’s PDF can exhibit multiple areas where probability
density is higher, which in turn means that several shapes posses
similar values for that relation. For example, by looking at the angle
between the fuselage and wing of an airplane, we might observe a
cluster of planes with orthogonal wings, and a cluster of planes with
angled wings (see Figure 1).

In our exploration interface, the user starts by loading a family of
shapes along with their extracted meta-representation. The user
then selects any shape as a guidance, and picks one or two shape
parts that she wants to use for exploring configurations inside the
shape family. Then, any of the unary and binary relations can be
selected, and the corresponding PDF can be inspected. Clicking
anywhere on the PDF causes the set of loaded shapes to be sorted
according to their distance from the clicked value. Then the user
can browse through the nearest shapes around the clicked value, in
increasing distance. This immediately defines an ordering of the
shapes that allows the user to explore the shapes which are most
similar in terms of exhibiting that specified value for the relation
and the parts in question (see supplementary video).

5.2 Guided shape editing

Editing a shape can be a difficult task as various geometric and se-
mantic aspects of the shape need to be considered to ensure a valid
result. We take advantage of the meta-representation as a facilita-
tor for this task, and use it as a guidance tool when editing shapes,
to create a shape where the part configuration is similar to that ob-
served in the shape family.

We propose an interactive shape editing tool where a user can ma-
nipulate the parts of a shape to create a variation of that shape.
The user can scale, rotate, and translate one or more parts of the
shape. Once an editing action has been carried out, the tool con-
sults the meta-representation to restore the validity of the deformed
shape. We can think of the user edit as taking the shape to a certain

point in the space of all relations (i.e., points on the different PDF
curves), which is associated with a probability given by the meta-
representation. Next, our goal is to achieve a part arrangement so
that the shape parts move to a (nearby) configuration with higher
probability, corresponding to a valid shape. In this process, we con-
strain the deformation to take the shape to the closest valid state, so
that the current part configuration is preserved as much as possible.
We first formulate the problem using the meta-representation, and
then propose an optimization to enable interactive applications.

Guided editing formulation. We pose the problem of taking an
edited shape to a valid state as an optimization where we seek to
increase the probability of the part configurations. This can be ac-
complished by modifying the part configurations so that the prob-
ability of their relations is locally maximized. Thus, assuming that
the configuration of the shape parts P is described by a matrix C,
we can pose the deformation goal as

Def(P) := argmax
C

Obj(C,P), (8)

where the objective function is given by

Obj(C,P) := exp (−λ‖C − C0‖) +
∏
∀Pi

pPi(Ci)×∏
∀{Pi,Pj}

p{Pi,Pj}(Ci, Cj).
(9)

Here, C0 denotes the initial configuration of the parts, Ci is the
entry of C corresponding to the configuration of part Pi, pPi is the
unary probability of part Pi, given by

pPi(Ci) =
∏
k

pli,Uk (fUk (Ci)), (10)

and p{Pi,Pj} is the pairwise probability of parts Pi and Pj :

p{Pi,Pj}(Ci, Cj) =
∏
k

pli,lj ,Bk (fBk (Ci, Cj)), (11)

where li and lj are the labels of Pi and Pj , respectively, pli,Uk

is the probability according to Equation (7) applied on PDFli,Uk ,
pli,lj ,Bk is the probability from PDFli,lj ,Bk , fUk is a function that
computes the value of relation Uk according to the configurationCi
of part Pi, and similarly fBk is a function that computes the value
of relation Bk according to the configurations Ci and Cj of parts
Pi and Pj . We used a scale factor λ = 0.1.

Thus, the first term of the objective function ensures that the solu-
tion does not deviate far from the initial part configuration, while
the second term captures the probability of the entire part config-
uration as a combination of probabilities for individual parts and
pairs of parts, computed according to the meta-representation. We
now describe how to find such a solution.

Global optimization. We can directly search for a solution to the
objective function in (9) with a non-linear optimizer, such as the
BFGS quasi-Newton method. Note that the representation for the
part configurations in the objective function is independent of the
relation set. The relations R are designed to capture the properties
that the configuration should satisfy to ensure shape validity, while
the configurations C give the actual part positioning. In our imple-
mentation, we encode each Ci in terms of the position of the OBB
center, the scales of its three main axes, and three Euler angles that
describe the rotation of the OBB. Thus, the optimizer can directly
search for the part configurations that satisfy the objective function.

However, this problem is a non-linear optimization of size |C|,
which can take a considerable amount of time to solve when the in-
put shapes consist of several parts (e.g., several minutes for a shape



Figure 5: The meta-representation enables the exploration of shape repositories: when clicking on different locations of the distributions,
the exploration tool presents models with the selected relation values. (a) shows a unary relation for the blue parts, while (b) shows a binary
relation between the green and blue parts. The shapes are ordered according to an increase of the selected relations values (black dots). Note
that the 3rd and 4th chair both correspond to the highest peak. The red bars are all the training samples used to build the distributions.

even with a few parts). Since our goal is an interactive tool, we
propose a heuristic solution to speed up the computation of this ob-
jective, which we describe next.

Progressive solution. We break the global problem into a series
of local optimization iterations. In each iteration, we pick one part
P ? and solve for its position according to a set of parts that were
already fixed. Next, P ? is added to the set of fixed parts, and we
continue with the remaining part(s). We first describe how to de-
termine a good propagation order (i.e., which part to fix next), and
then how to position (i.e., fix) the selected part.

Determining a propagation order: Given a set of fixed parts
F := {P1, . . . , Pm}, our goal is to select part P ? from the set
of remaining parts M := {Pm+1, . . . , Pn} that still need to be
moved to a fixed position. For each pair of parts (Pk, Pl) with
Pk ∈ F , Pl ∈ M, let Bic(Pk, Pl) be the current value of rela-
tion Bi between parts Pk and Pl, and Biopt(Pk, Pl) its value after
searching for a higher probability state of Pl according to the fixed
part Pk. Let, p(Bic(Pk, Pl)) and p(Biopt(Pk, Pl)) be the corre-
sponding probabilities. We define the probability gain as,

PG[Bi(Pk, Pl)] := δ · [p(Biopt(Pk, Pl))−p(Bic(Pk, Pl))] (12)

where,

δ = |Biopt(Pk, Pl)−Bic(Pk, Pl)|/Ri(k, l),
Ri(k, l) = max

c
{Bic(Pk, Pl)} −min

c
{Bic(Pk, Pl)}.

We select the part with the maximum gain as the part to be fixed
next, i.e., P ? ← argmaxl,i PG[Bi(Pk, Pl)].

Given a relation value Bic(Pk, Pl), we follow the ascending gradi-
ent direction from this value to a local maximizer in the distribution,
according to the PDF corresponding to Bi. This provides a target
value Biopt(Pk, Pl). Note that if Bic(Pk, Pl) happens to be in a
very low probability region, we jump to the closest mode of signifi-
cant probability. We also bypass modes that have a probability that
is lower than a threshold (0.01 in our experiments). Figure 1 shows
examples of such movements.

Solving for a part position: We now position the selected part P ?

given a set of already fixed parts F . One option is to directly use
a modified formulation of Equation (8) wherein configuration C
only considers the parts in F and P ?; and only relations involving
(P ?, Pk) for all Pk ∈ F are considered.

However, in practice, we found an approximate method to be
much faster and more suitable for interaction. In this approximate
method, each of the fixed parts independently suggests a new part
position for P ?; these positions are then combined together for the
final position. Specifically, each part Pk ∈ F proposes a position
P ?k based on the relations {Bi(Pk, P ?)}. For an even smoother
interactive experience, we also experimented with defining the in-
fluence of a fixed part based on its adjacency. In this setting, we
only consider suggestions for P ? given by its neighboring parts.
We found this approach to be approximately three times faster with
little to no difference in the resulting configuration. Since the re-
lations that we consider over-constrain the position of the part, for
each part Pk ∈ F , we sort the relations according to their probabil-
ity gain and select the subset of relations Bk that both maximizes
the gain and determines a unique position for P ?k . This subset also
determines a confidence weight wk ←

∑
j∈Bk

PG[Bj(Pk, P
?)]

for this proposed position. The final position for P ? is then taken
as the weighted average of the candidates P ?k .

Inter-part symmetry handling. Inter-part symmetries within a
shape, which are detected in the analysis phase (see Section 4), are
utilized in our heuristic with the purpose of symmetry preservation,
since this is a natural constraint for man-made objects. First, if
the user deforms a part that has symmetric counterparts, the sys-
tem begins by applying a similar deformation to all its symmetric
parts, so that they are consistently configured prior to optimization.
Next, throughout the optimization, symmetric parts are deformed
as a group: only a single part of the group is directly deformed and
then the deformation for the remaining parts is automatically in-
ferred from that. Note that same-label parts that are not symmetric
also exhibit a measure of consistency in their configurations, but to
a lesser extent than symmetric parts. Therefore, such parts are also
handled as a group, i.e., their configurations are determined by the
same set of fixed parts, although they are optimized separately.



Global optimization. In comparison with an expensive global ap-
proach, we still achieve two goals. First, we maximize the proba-
bility of the relations by moving each part to increase the overall
probability gain. Although we do not ensure a global maximum,
we reach a local maximum of relation probabilities. This is demon-
strated by the following experiment: if we apply the global opti-
mization to the result of the progressive solution in Figure 7(b), the
part configuration does not change significantly, showing that the
probabilities are indeed located at a local maximum. Second, by
starting the progressive solution from the user edit and following a
local optimizer path, we ensure that we do not deviate much from
the initial solution as only deformations that increase the overall
probability are allowed.

In terms of complexity, an iteration of the propagation is much
faster to solve (in the order of seconds), as there is only a single
part to be optimized at each step. Thus, the aggregated time of all
propagation iterations is also much less than the time needed to per-
form the global optimization, making this heuristic well suited to an
interactive tool. For example, the first deformation in Figure 7(b)
takes 0.33 seconds with the progressive solution, while the global
optimization takes 1.8 hours.

5.3 Coupled shape editing

Editing multiple shapes at the same time in a coupled manner can be
faster and more productive in situations where a modeler would like
to perform the same type of edits to a family of shapes. The meta-
representation directly allows such coupled guided edits through
the relation PDFs. We have developed a coupled shape editing tool
to illustrate this concept.

In the coupled editing tool, the user starts by loading a family of
shapes, as before, pre-analyzed to extract the meta-representation.
By selecting one or two parts from any shape in the family, and
specifying a relation, the user can view the corresponding PDF. Re-
call that the PDF is built from a set of training samples of relation
values coming from all the shapes in the family. The user can then
edit the curve using a range of different manipulations. She can
click anywhere on the curve to select a point, and then scale the
training samples to the left and to the right of the selected point.
This can be used to set all training samples for that relation to a
specific value that is desired (see Figure 10 for an example where
the angle between chair back and chair seat is set to a very small
range of around 90 degrees).

This manipulation of the curve immediately defines a mapping be-
tween the initial training sample values and their newly specified
values. We then iterate over all the shapes and set the value for
that specified relation to the new value coming from the mapping
induced by the new curve. This is done by rotating, translating and
scaling the parts in question so that the value for the specified re-
lation between them is set to the new value. This edit can break
the relation between the rest of the parts for each shape, therefore
we use the original contact relations to rotate and translate these
parts until the contact relations are restored. Finally, since the meta-
representation is no longer valid after the training shapes have been
edited, in the last step we recompute the meta-representation based
on the new part configurations for each shape in the family.

6 Experiments and results

In this section, we describe the experiments performed to evaluate
the meta-representation. We designed three tools that illustrate the
different areas where the meta-representation may be of use.

For all our experiments, we used four datasets of man-made shapes.

The largest dataset contains around 400 chairs, taken from the
COSEG benchmark database [Wang et al. 2012]. We also used a
smaller dataset containing around 40 chairs, and two datasets with
around 20 bicycles and 20 planes [van Kaick et al. 2013]. Smaller
datasets were chosen to demonstrate that even with a small number
of training samples, the meta-representation can capture important
and useful relations between shape parts. All the datasets were pre-
processed, starting from segmentation and consistent labeling, to
establish correspondence between parts, abstraction of shape parts
into boxes, consistent ordering of box axes, building the set of rela-
tions, and learning the model PDFs.

6.1 Exploration of shape repositories

Figures 1 and 5 show examples of exploration enabled by the meta-
representation. In Figure 1, the user selected the wings and fuselage
of airplanes, and navigated thorough the relations until selecting the
angle between the first axes of the two parts. Note that these axes
are aligned to point to the same general direction. The distribu-
tion shows that there are two main modes in the set: one mode
located at around 0 radians (corresponding to wings orthogonal to
the fuselage) and another mode centered at 0.7 radians (wings bent
by 40 degrees). By clicking on locations of the two modes, the sys-
tem presents the corresponding shapes. In Figure 5 (a), the user
selected a unary relation for the chair legs, corresponding to the
extent of the vertical axis of the legs in relation to the size of the
entire shape. With the tool, the user can identify the three modes
that exist and display a few representative shapes. In (b), the scale
difference between the second axis of the seat and back is selected
(corresponding to the chair width). We observe that from the point
of view of this relation, the chairs exhibit larger variation. The user
can form an understanding of the groups by inspecting a few shapes
for each mode. Additional examples of exploration are shown in the
supplementary video.

These examples show an advantage of the per-relation exploration:
instead of pre-selecting a single relation and clustering the shapes
into a few representative groups, the user is able to explore the set
according to the relation that is relevant for a given task (e.g., find-
ing bar chairs with tall legs or jet airplanes with bent wings). This
allows the user to learn about the different shape variations that ex-
ist in the set (regarding the specific relation selected), as well as how
prevalent they are (as implied by the shape of the distribution). Ad-
ditionally, nearest neighbors can be retrieved according to a specific
relation, providing models in similar geometric configurations.

Representative abstraction: The meta-representation can also be
utilized to enhance exploration by automatically creating a repre-

Figure 6: Top row: representative abstract configurations automat-
ically obtained from the meta-representations of families of chairs,
bikes, tables, and planes. Bottom row: corresponding representa-
tive shapes synthesized for the abstract configurations.



Figure 7: Gallery of editing results guided by the meta-representation: each example shows the original shape and one or more edits where
the user rotated or scaled one part. The shapes optimized according to the meta-representation are shown after the arrows.

sentative box configuration and shape for a given shape family. The
abstraction is created as follows: given a set of shapes, we first an-
alyze the existence and number of instances of each semantic part.
Since each shape differs in this aspect, we only retain semantic parts
that exist in σ or more of the shapes (we use σ = 0.5). The number
of instances of a semantic part is based on what is most common
across the set (e.g., common number of chair legs). We determine
the size properties of each part by querying the PDF of each extent
relation for the highest probability mode. In order to infer the rela-
tive rotations between the parts, we employ an approach similar to
the propagation method described in Section 5.2. Here, however,
as we aim to create an abstraction that is most indicative of the set,
we consider pure probability in place of probability gain. Using
the PDFs for all angle relations, we compute the highest proba-
bility mode for each relation, and each pair of parts, and use it to
guide the propagation. Finally, we connect the parts based on an

example shape for which the contact relations are maximized. This
provides a configuration of boxes that represents a family of shapes.
In order to create representative shapes, we find the parts that are
closest in size and configuration to each box in the abstraction and
combine them to form a shape, while deforming the parts to fit the
abstract configuration. See Figure 6 for representative abstractions
and shapes computed for four sets. Note that the representative ab-
straction is derived directly from the meta-representation and does
not assume any seeding model.

6.2 Guided shape editing

Figure 7 displays results of guided editing obtained with the pro-
gressive solution described in Section 5.2, where the user deformed
selected parts of the shapes and the guided editing tool then returned
shapes optimized according to the meta-representation. Note that



the examples in (a), (c), (e), (g), (h), and (i), were optimized with
the meta-representation extracted from the small set of chairs, while
the other edits were guided by the large set of 400 chairs.

We identify two improvements conveyed by the progressive opti-
mization in these examples. First, if the configuration of parts cre-
ated by the user is less common for the set, the system deforms the
shape to a configuration with higher probability. This can be seen
in the first example in (b), where although the user bent the back
of the chair, the system rotated it back to a vertical position, as not
many chairs have that specific inclined angle in the set. On the other
hand, if the back is deformed to a larger angle, the system keeps the
shape in this state, as there are more chairs with this configuration
(also see Figure 1). Secondly, although the edited part becomes dis-
connected from the rest of the shape after the user edit, it is again
connected to the shape as enforced by the contact point relations.

More importantly, if the editing constraints were derived
from a single shape, we could incorrectly assume certain

Figure 8: Correcting a chair with
a severe deformation using the
meta-representation.

semantics, e.g., that the
back and seat or wing
and fuselage in Figure 1
need to remain orthogonal.
In this regard, the meta-
representation adds guid-
ance with flexibility, by al-
lowing more deformation
freedom where the fam-
ily supports it, or con-
straining the shape if it
does not. Figure 8 further
exemplifies this fact: al-
though a chair is severely
deformed, having lost its
defining characteristics, the guided editing system is able to cor-
rect it, showing the effect of the chair prior that is present in the
meta-representation.

Figure 9 shows a sequence of three editing operations applied on
the same shape to illustrate the function of the guided editing tool.
We can see how after each edit, multiple relation values are taken
to lower probability states. These are then restored to higher prob-
ability states by the optimization.

6.3 Coupled shape editing

An example of coupled editing is shown in Figure 10. The user
directly manipulates the distribution of angles between the first axes
of chair seat and legs, to obtain a simplified curve with less variation
in the angles. Next, all the shapes are automatically deformed to
conform the set to the new distribution. Thus, all the inclined legs
become straight (forming an angle of 90 degrees with the seat), as
angles that deviate too much from 90 degrees have a probability of
zero in the new distribution.

As discussed in Section 5.3, this is a useful application when the
goal is to collectively edit a set so that it satisfies specific geometric
configurations. The overall variation that exists in a relation can be
reduced by manipulating the distributions, or outlier models can be
forced to conform to a specific range of values by removing their
data points from the PDFs. Thus, the distributions act as a higher-
level representation of the entire set, and the user is able to impact
the geometry of several shapes by manipulating this representation.

7 Conclusions

We introduced a meta-representation to capture the essence of part
configurations in a family of shapes. This is accomplished with a
system of distributions of unary and binary relations of shape parts,
which can then be used for applications such as repository explo-
ration, guided shape editing, and coupled editing of a set.

Limitations and future work. With the system of distributions
learned from a family of shapes, we effectively model shape va-
lidity in terms of probability, where the probabilities are derived
from the frequency of part configurations in the set. This is ap-
propriate for an exploration tool, as we are interested in exploring
common styles in the set. The distributions can also capture some
of the shape semantics if the set contains a representative sample
of shapes from the family. In this context, there are some direc-
tions for introducing additional semantics into the representation.
One possibility is to allow the user to add forbidden regions to the
distributions, implying that part configurations with the correspond-
ing relation values should not exist in the set, potentially allowing
asymmetric distributions. In this way, the user can provide addi-
tional semantic information. Ultimately, the user could also design
the distributions by manually drawing the PDFs to imply the se-
mantics of the set.

Regarding our current model, we introduced a criterion for select-
ing a satisfactory bandwidth for each distribution, however, user
supervision could also help in determining the optimal bandwidth,
yielding a more accurate system of distributions. Moreover, if a
shape possesses |P| parts, the representation consists of

(|P|
2

)
×|R|

curves. Thus, another direction for future work is to design a more
compact representation. This has to be balanced with the fact that,

Figure 9: Guided editing tool. Bottom: a sequence of three edits.
Top: three relations and the values corresponding to the parts in-
volved in the edits are shown before and after optimization (blue is
the first edit, red is the second, and green is the third).



Figure 10: Coupled editing of a family of shapes obtained with the meta-representation: the distribution on the left (angle in radians between
the main axes of seats and legs) is directly manipulated by a user, who changes the curve to acquire the more compact profile on the right. As
a result, all the models in the set are automatically deformed to conform to the new distribution (bottom row).

as we are able to obtain more data, we would also seek to learn the
correlations in the sets, possibly requiring a more complex model.

Furthermore, although the OBB construction described in Section 4
is stable across many shapes, it does not always yield optimal
boxes, leading to inconsistent results in the presence of ambigui-
ties. For example, the legs of the swivel chairs in Figure 11(a) can-
not be oriented consistently based only on their symmetries, while
the boxes computed for the landing gears in Figure 11(b) are also
incorrectly aligned due to the geometry of the parts’ convex hulls.
One possibility for circumventing these problems could be to incor-
porate an algorithm that learns to predict the consistent box orienta-
tion from the orientation of other parts in the same shape. Another
alternative is to replace the part primitives with other types of prox-
ies, such as curves or sheets that do not need alignment.

(a) (b)

Figure 11: Inconsistencies in the alignment of different OBBs.

In terms of our implementation choices, different sets of relations
can be used with the meta-representation, as we experimented only
with one specific set. For shape editing, currently the ordering in
which parts are deformed is determined by a probability gain crite-
rion, not by a semantic ordering of parts. For example, the stabilizer
of a plane can have more impact on wings than the fuselage. Thus,
more sophisticated criteria can be developed to determine such or-
dering. Also, the unary relations are currently not taken into ac-
count when optimizing the shapes with the progressive solution, as
they are not derived from the positions of other parts. Thus, these
may also be added to the heuristic solution. Finally, one more di-
rection for future work is to use the meta-representation directly for
shape synthesis. This could be accomplished by appropriately in-
troducing variation in the relation values of the shapes, according
to an existing set of distributions or user-designed PDFs.
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