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Figure 1: We present a method for generating the design of a mechanical automaton (bottom row) that approximates an input motion
sequence (top row). Our algorithm automatically determines the configuration, dimensions, and layout of all mechanical components.

Abstract

Mechanical figures that mimic human motions continue to enter-
tain us and capture our imagination. Creating such automata re-
quires expertise in motion planning, knowledge of mechanism de-
sign, and familiarity with fabrication constraints. Thus, automaton
design remains restricted to only a handful of experts. We pro-
pose an automatic algorithm that takes a motion sequence of a hu-
manoid character and generates the design for a mechanical figure
that approximates the input motion when driven with a single input
crank. Our approach has two stages. The motion approximation
stage computes a motion that approximates the input sequence as
closely as possible while remaining compatible with the geometric
and motion constraints of the mechanical parts in our design. Then,
in the layout stage, we solve for the sizing parameters and spatial
layout of all the elements, while respecting all fabrication and as-
sembly constraints. We apply our algorithm on a range of input
motions taken from motion capture databases. We also fabricate
two of our designs to demonstrate the viability of our approach.
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1 Introduction

Mechanical automata are machines that use a combination of inter-
connected mechanical parts such as cranks, gears, and pulleys to
convert a driving force into a specific target motion. Since antiq-
uity, mechanists have created a wide variety of such machines for
many different purposes (e.g., clocks, music boxes, fountains). Au-
tomata designed to look like human figures performing every-day
actions like walking, waving, etc. are especially popular. Famous
historical examples include Leonardo Da Vinci’s life-sized armor-
clad “robot” from 1495 that could sit, stand and move its arms, as
well as the“Draughstman-Writer” of Henri Maillardet from the late
18th century, which was the primary inspiration for the automa-
ton in Brian Selznick’s book, The Invention of Hugo Cabret. To-
day, wind-up toys in the form of characters are the most common
types of mechanical figures. Our longstanding fascination with hu-
manoid automata likely stems from their ability to produce surpris-
ingly complex, lifelike motions from simple input forces through
purely mechanical means (see Figure 2).

Despite their widespread appeal, the design of automata is currently
restricted to a very small group of experts. Consider the challenges
involved in creating a mechanical figure that performs a specific tar-
get motion. First, a designer must choose a set of mechanical parts
and decide how to connect the parts together to approximate the

Figure 2: Examples of mechanical automata: Da Vinci’s mechani-
cal knight; Maillardet’s writer; an aviation chronograph.
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prescribed motion. Creating this initial design typically requires
extensive knowledge of different part types and how part interac-
tions transfer movement through the assembly. Next, the designer
must determine the appropriate part parameters (e.g., gear radius,
crank length) to best match the target motion. This step may re-
quire simplifying the target motion so that it falls within the range
of achievable motions for the set of parts. The final step is to ar-
range the parts spatially to create a valid physical realization of the
automaton. Few people have the necessary skills and expertise to
perform all of these design tasks.

In this work, we present an automated approach for generating me-
chanical figures that approximate a given target motion. The in-
put is an animation sequence for an articulated 3D humanoid fig-
ure (e.g., from a motion-capture database) that specifies the target
motion. Since automata typically perform repetitive actions, we as-
sume that the input motions are roughly periodic (e.g., a walk cycle,
an arm waving back and forth). We also assume that the motion of
individual limbs are nearly planar. While these restrictions limit the
space of motions that our approach can handle, we show that there
are many human movements that meet these assumptions. For ex-
ample, in most walking motions, the arms and legs move primarily
in planes that are parallel to the saggital plane of the body. Given
such a target motion, our system designs a mechanical automaton
in which the moving limbs are treated as a set of rigid links con-
nected by revolute joints and driven by gears, pulleys, and four-bar
linkages (see Figures 1 and 6).

Our method has two main stages. First, in the motion approxima-
tion stage, we convert the input sequence into a mechanically re-
alizable motion based on the constraints imposed by the types of
joints (revolute) and parts (gears, pulleys and four-bar linkages) in
our designs. More specifically, we convert the motion of each limb
in the input figure to a set of oscillating bone rotations that can
be reproduced by a kinematic chain of rigid links in our automa-
ton design. Then, in the layout stage, we solve for the parameters
(e.g., tooth counts, link lengths) and spatial layout of the mechani-
cal parts to produce the desired motion of each link. We formulate
a constrained optimization that tries to match both the target mo-
tion and the bone proportions of the input figure, while satisfying
various physical and fabrication constraints.

Our system generates designs with the following characteristics:

Simple components. Our designs use only a few different types of
components (rigid links, spur gears, bevel gears, pulleys, and four-
bar linkages, see Figure 6) that are easy to fabricate or obtain. The
use of four-bar linkages allows us to generate oscillating motions
with continuous acceleration rather than abrupt changes in direc-
tion, which can put significant stress on the components. In our
physical examples, we fabricate the links, spur gears and four-bar
linkages with a laser cutter and obtain pre-made bevel gears and
pulley components from a craft store.

Single input crank. Our mechanical figures are designed to be
driven with a single input crank that rotates at a constant angular
speed. The automaton converts the crank rotation to oscillatory
movements that are propagated to the appropriate links in the figure.
This propagation can generate oscillations with different phases and
frequencies for different body parts, which greatly expands the ex-
pressive range of our designs. For example, in running motions, the
oscillations of the upper and lower arms are typically out-of-phase.

Freestanding. Our system generates freestanding automata where
the mechanisms that produce motion are attached directly to the
links of the figure. In contrast, tethered automata often place mech-
anisms in a box below the figure and create motion by physically
connecting moving parts in the box to the limbs above (e.g., [Zhu
et al. 2012]). Freestanding designs enable a wider range of mo-

tion because limbs are not connected to an external structure (e.g.,
arms tethered from below cannot cross each other in arbitrary ways
because their connectors may collide).

We have evaluated our framework using a variety of motion capture
sequences from the CMU motion database [Carnegie Mellon Uni-
versity 2003]. We generated physically-realizable mechanical de-
signs for several different motions and validated each of them in a
kinematic simulator. In addition, we physically manufactured, as-
sembled, and tested two of our designs (see Figure 1 and 7 and the
supplementary video).

2 Related Work

Mechanism design. Mechanism design is traditionally divided into
two phases. Creating a conceptual design involves identifying the
types of mechanical parts that are capable of realizing desired mo-
tions. Previous work attempts to automate this task by decomposing
specific functional goals into smaller subgoals and matching them
to a database of common building block mechanisms ([Chiou and
Sridhar 1999; Roy et al. 2001; Han and Lee 2006] and references
therein). Since our work focuses on one specific type of motion
conversion (i.e., converting the rotation from an input crank to ro-
tations of bones), we do not require an explicit conceptual design
phase. As mentioned earlier, our designs use a small set of prede-
fined parts, which simplifies the fabrication process.

The second phase of mechanism design is dimensional synthesis,
which determines the configuration parameters and spatial layout
of the identified parts. A common approach is to identify the rel-
evant spatial constraints between parts and then satisfy these con-
straints to compute part positions and orientations [Anantha et al.
1996; Kim et al. 2000]. Recent methods encode the mating and
alignment relations between different parts of an assembly using
a graph of geometric constraints [Peng et al. 2006; Haller et al.
2009]. We adopt a similar constraint-based approach to synthesize
our mechanical designs. However, the complex, articulated human
motions that we aim to reproduce impose a unique set of constraints
on both the configuration parameters and spatial layout of our gears.
In particular, our dimensional synthesis algorithm must generate a
system of gears, pulleys and four-bar linkages that produce hierar-
chical bone rotations that match a given target motion.

In recent work, Zhu et al. [2012] present a system for producing me-
chanical assemblies that approximate user-specified input motions.
Two key differences distinguish their problem setting from ours.
First, they produce tethered assemblies where characters or objects
(represented as rigid feature components) are driven from below
by mechanisms hidden inside a box. We generate freestanding ar-
ticulated automata, which imposes very different requirements on
our dimensional synthesis algorithm. Furthermore, Zhu et al. focus
on target motions that are different from ours. Their tethered de-
signs drive each rigid feature component with one or two mechani-
cal parts, which allows the component to perform a simple rotation,
translation or certain combinations of two rotations/translations
along orthogonal planes or axes. In contrast, our mechanisms re-
produce articulated human motions with moving kinematic chains
of rigid links, each of which can undergo complex motions based
on the combined motions of its ancestor links in the skeleton.

In concurrent work, Coros et al. [2013] present an interactive sys-
tem for designing animated mechanical characters. Their method
supports complex target motions that are specified by sketching pla-
nar motion curves. For each kinematic chain of the given articulated
character, a single actuation point is selected, and the motion is
propagated to the rest of the chain by rigid connections provided as
part of the input. In contrast, we present a method to realize the mo-
tion of each bone in a kinematic chain as oscillations with possibly
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Figure 3: Oscillation module. In our design, we drive the rigid links of the automaton with oscillation modules that consist of gears, pulleys,
and four-bar linkages (a–b). These components are stacked onto axles that are connected to each link. We show the stacking order of the
parts (a) starting from the bottom layer (Layer 1), as well as an exploded view (b) of the module that shows the axles and rigid connectors.
The module converts an input rotation to an oscillating motion (b) and also propagates a uni-directional rotation to the next module (c).

different phases and frequencies. Our approach is fully automatic
consisting of a motion approximation stage to convert the input se-
quence into a mechanically realizable motion and a layout stage to
optimize for the placement and parameters of the elements of the
designed automaton.

Shape analysis. Researchers have investigated how to retarget in-
put poses/motions using articulated motions by determining joint
locations and types. For example, Xu et al. [2009] analyze input
models based on local slippage analysis to assign appropriate joint
types and support joint aware deformations. In the context of map-
ping human motion to humanoid robots, Pollard et al. [2002; 2003]
impose joint angle and velocity limits to a captured human motion
to match the less flexible skeleton of a robot. Mitra et al. [2010]
analyze static 3D meshes of mechanical assemblies to understand
their part interactions and resulting inter-part motion possibilities.
Recently, Bacher et al. [2012] augment skinned meshes with 3D
printable joints that do not require any assembly. Users can then
pose these models into different configurations. In contrast, we start
from an articulated 3D figure and focus on automatically generat-
ing a mechanical automaton that recreates an input motion sequence
when driven by a single input crank.

Fabricatable models. The advent of accessible 3D fabrication
techniques has led to recent work on various fabrication-aware
modeling techniques, including optimizing geometry towards cre-
ating functionally valid furniture [Umetani et al. 2012]; improv-
ing stability and robustness of printed models with thin struc-
tures [Stava et al. 2012]; creating complex assemblies of pla-
nar intersecting pieces [Schwartzburg and Pauly 2013]; creating
assembly-free printable articulated models [Calı̀ et al. 2012]; and
decomposing large models into smaller parts that can be printed
and assembled [Luo et al. 2012]. These methods generate static
models, while our goal is to create moving mechanical figures that
recreate a target motion.

3 Generating mechanical designs

The input to our system is an animation sequence of an articulated
3D human figure. Since automata typically perform repetitive ac-
tions, we assume the input is a periodic motion where parts of the
figure oscillate. From this animation, our system automatically pro-
duces a humanoid automaton design that uses a combination of

rigid links, pulleys, gears and four-bar linkages to approximate the
input motion. The first stage in our method is motion approxima-
tion, where we convert the input animation to a simpler motion that
can be realized mechanically. In particular, we decompose the mo-
tion of the entire figure into the motions of kinematic chains (arms
and legs) that can be approximated by planar oscillations of individ-
ual bones (see Section 3.2). Then, in the layout stage, we generate
a physically valid layout of the mechanical components that real-
izes the simplified target motion and respects the proportions of the
bones in the input figure. We first solve for the layout of each indi-
vidual kinematic chain (Section 3.3). Then we generate additional
gears and support structures to compose all the chains into a unified
design that is driven by a single input motor (Section 3.4).

3.1 Mechanical automaton design

Before describing the details of our motion approximation and lay-
out optimization, we first introduce the basic mechanical design that
we use to generate a moving automaton.

saggital

coronal

transverse

revolute joint
head-shoulders-
torso-hips
left arm
right arm
left leg
right leg

Our design represents the bones of the
input figure with rigid links. Since
many human motions are character-
ized primarily by the movement of
the limbs, we connect the arm and
leg links with revolute joints to cre-
ate points of articulation at the shoul-
ders, elbows, hips and knees of the au-
tomaton. We orient these joints such
that the motion of all the links within
a limb lies in a single plane that is par-
allel to the saggital, coronal or trans-
verse plane of the figure (see the inset
figure).

While constraining limb motions to these orthogonal planes lim-
its the range of movements that our mechanisms can achieve, this
design makes it possible to transfer the rotation of a single input
motor to the motion plane of each limb using standard bevel gears,
which convert rotation across orthogonal planes. Furthermore, as
our results show, there are many human movements in which the
motion of the limbs is mostly parallel to one of these planes (e.g.,
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walking, jumping jacks). Since we focus primarily on the motion
of the limbs, we combine the head, shoulder, torso and hips to form
a single rigid component.

To make the links move, we introduce an oscillation module
that uses gears, a pulley, and a four-bar linkage to convert uni-
directional rotation into an oscillating motion (see Figure 3a–b and
Figure 6). The input to a module Mi is gear Di. Applying a uni-
directional rotation toDi causesAi to rotate, which drives the input
crankBi of a four-bar linkage. The linkage converts this input rota-
tion into an oscillating rotation of its output crank Ci. The axles of
Di, Ai and the fixed pivot of Ci are all attached to link li−1 while
the moving pivot of Ci is connected rigidly to link li. Thus, the
oscillation of Ci causes li to oscillate as well (Figure 3c). Rotat-
ing Di also drives pulley wheel Pi, which is attached rigidly to the
same axle as Di. The pulley belt Qi transfers the rotation of Pi to
pulley wheel Ri. To prevent slipping between Pi, Qi and Ri, we
use pulley wheels and belts that have interlocking teeth. Connect-
ing Ri rigidly to the same axle as the input gear Di+1 of the next
module Mi+1 propagates the motion to the next link in the chain
(see Figure 3d). Thus, we can move an entire limb of the automa-
ton by attaching a chain of oscillation modules to the rigid links and
driving the root module M1 (which must be attached to a station-
ary link of the figure) with a uni-directional rotation. Note that the
module that drives the last link in the chain does not have pulley
parts because no further rotation propagation is required. To sim-
plify the motion and layout parameters described below, we restrict
Di and Ai to be the same size.

Motion parameters

There are several parameters that define the mechanical motion of a
chain of oscillation modules. The motion of a single module is de-
fined by the rotation speed α̇i of the input gear Di, the bar lengths
bi, ci, gi in the four-bar linkage, and the initial angles θi(0) and
φi(0) of the input and output cranks in the linkage (see Figure 4a).
Note that the length hi of the bar connecting the ends of the two
cranks Bi and Ci is fully determined by the other linkage parame-
ters. Following [McCarthy 2000], we can express the angle φi(t)

of the output crank Ci at time t as:

φi(t) = arctan

(
Si(t)

Ti(t)

)
+ arccos

(
Ui(t) − Vi(t)

Wi(t)

)
(1)

Si(t) = 2bici cos(θi(t)) − 2gici

Ti(t) = 2bici sin(θi(t))

Ui(t) = 2bigi(cos(θi(0))−cos (θi(t)))

Vi(t) = 2ci(gi cos(φi(0))−bi cos(θi(0)−φi(0)))

Wi(t) = 2ci

√
g2i +b

2
i −2bigi cos(θi(0)),

where θi(t) denotes the rotation of the input crank Bi at time t.
If Di is rotated by an angular speed of α̇i, both Ai and Bi will
have an angular speed of −α̇i. Thus, we can conclude that θi(t) =
θi(0)− tα̇i.

When we connect a chain of oscillation modules together, we must
account for the fact that the input crank rotation θi(t) for each mod-
ule depends on the motion of the parent link li−1. Since the axle of
Ai is connected to li−1, Ai rolls around Di as li−1 rotates, which
affects the total rotation of Ai (see Figure 4b). Specifically, if we
apply the rotation speed α̇i to Di, then the angular speed of Ai is
a combination of this input rotation and the rotation of li−1. As a
result, the definition for θi(t) in a chain of modules becomes

θi(t) = θi(0)− tα̇i + (φi−1(t)− φi−1(0)), (2)

where (φi−1(t)− φi−1(0)) denotes the total rotation of Ci−1 (and
thus the attached link li−1) with respect to its initial angle at time t.
Since the root module M1 that drives the first link l1 in the chain is
attached to the main support structure of the automaton rather than
a moving link, we define φ0(t) to be 0 for all t.

Our design imposes a few contraints on the motion parameter val-
ues. To ensure that the input crankBi of the linkage can rotate fully
when driven by Di, we constrain the relative lengths of the linkage
bars as follows [McCarthy 2000]:

gi + bi − hi − ci < 0

(hi − ci)2 − (gi − bi)2 < 0

Further, since the argument of the arccos function in Equation 1
must be in the range −1 to 1, we enforce the following constraint:

2gi(bi cos(θi(0))− ci cos(φi(0))) +

2bici cos(θi(0)− φi(0))− b2i − c2i − g2
i ≤ 0

The equations above define the space of all possible motions for a
chain of rigid links using our design. Section 3.2 describes how
we use these relationships to compute motion parameters that best
approximate an input animation sequence.

Layout parameters

While the motion parameters partially specify the configuration of
the oscillation module components, we must specify several ad-
ditional parameters to fully define the layout of the module. The
parameters bi, ci, gi determine the lengths of the linkage bars, but
since scaling the entire linkage uniformly does not change its mo-
tion, we treat the overall scale ωi as a free layout parameter. The
other layout parameters include the radii of the gears and pulley
wheels (rDi , rAi , rPi , rRi ) as well as the pulley belt length sQi

and link length sli . As mentioned earlier, we restrict Di and Ai to
be the same size, so we set rAi =rDi and eliminate rAi as a free pa-
rameter. Given a fixed tooth size, the tooth count of the gears, pulley
wheels and pulley belt determines the radius/length of those compo-
nents. Thus, our layout optimization expresses rDi , rPi , rRi , sQi

in terms of integer tooth counts kDi , kPi , kRi , kQi .
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Not all assignments of layout parameters result in physically valid
layouts. There are three relevant constraints:

1. To prevent Ai from colliding with the axle of the next link
li+1, we must ensure that rAi < ωigi.

2. Similarly, to avoid collisions between the pulley wheel Ri of
the moduleMi and the axle of the gearAi+1 of the next mod-
ule Mi+1, the relation rRi < 2rAi+1 must hold.

3. The length of each link must match the size of the components
placed on the link, so that sli = 2rAi+1 + ωi+1gi+1. The
link length also influences the pulley belt length sQi . How-
ever, since belts with a small amount of slack do not prevent
the pulley from functioning, we represent this relationship as
an energy term in our layout optimization rather than a hard
constraint (see Section 3.3).

There are also a few constraints that reflect limitations of our fabri-
cation process.

1. We manufacture gears Di and Ai with a laser cutter, which
limits the minimum and maximum sizes (i.e., tooth counts)
of these components. In our designs, we constrain the tooth
count to be between 14 and 80.

2. Similarly, we constrain the lengths of the linkage bars based
on the minimum bar length (8mm) that we can cut.

3. Finally, since it is difficult to create robust pulley wheels and
belts with a laser cutter, we use stock pre-made pulley parts
that are only available in a discrete set of wheel and belt sizes.
To encode this constraint in our layout parameterization, we
introduce a set of binary indicator variables {u1, u2, ..., uN}
to select between the N available part sizes {v1, v2, ..., vN},
and we represent the size of each pulley part as

∑N
i=1 uivi

with the constraint
∑N
i=1 ui = 1.

This set of layout parameters and constraints fully specifies the
physical layout of a limb mechanism in our design. Section 3.3
describes how we solve for a layout that matches a set of target
motion parameters.

3.2 Motion approximation

Given a mocap sequence as input we simplify the animation by
projecting the motion of the bones within each limb onto a plane.
We then run an optimization to find the motion parameters that yield
the best approximation of the planar motion that can be generated
with a chain of oscillation modules.

Planar approximation

For each kinematic chain, we start by tracing the path Xi =
{xi(1), xi(2), ..., xi(n)} of the endpoint of the ith bone at each
frame of the input animation sequence with respect to its parent
joint where n is the total number of frames. We then compute the
least-squares plane of the traced path and project each point onto
this plane to obtain a planar path Yi = {yi(1), yi(2), ..., yi(n)}.
Finally, for every frame j, we convert the motion of each bone to a
rotation Φi(j) around the normal of the fitted plane as

cos(Φi(j)) = cos(Φi(j − 1)) +
yi(j)

‖yi(j)‖
· yi(j − 1)

‖yi(j − 1)‖ ,

where cos(Φi(1)) denotes the initial orientation of the bone with
respect to its parent and cos(Φi(0)) = 0. Converting the rotation
of a single input crank to motion in different planes requires the
use of bevel gears. Since standard bevel gears only allow changing
the rotation axis across orthogonal planes, we snap the plane of
motion for each limb to the saggital, coronal or transverse plane of
the figure.

Motion parameter optimization

Given the planar bone rotation angles Φi(j) for each chain, our goal
is to compute motion parameters that approximate the mocap bone
motion with the corresponding rigid links in the automaton. Since
each link li is driven by the output crank Ci, we aim to produce a
mechanical motion where changes in the crank angle φi(t) match
changes in the bone angles Φi(j). Thus we define the following
energy term for each chain:

EΦi =
∑
i

∑
j

(
sin

∆Φi(j)−∆φi(j)

2

)2

(3)

where i indexes the bones, j indexes the frames of the animation
sequence, ∆Φi(j) = Φi(j + 1)−Φi(j) denotes the change in the
bone angle between frames j and j+1 and ∆φi(j) = φi(j+1)−
φi(j) denotes the corresponding change in angle of the output crank
Ci.

As explained in Section 3.1, φi(t) depends on the four-bar linkage
parameters bi, ci, gi, θi(0), φi(0), and the input angular speed of
each module α̇i. We minimize EΦi by optimizing these parame-
ters. Instead of directly optimizing for α̇i, we represent α̇i in terms
of the pulley ratios for all the preceding modules in the chain. In
particular, for all but the root module M1, the input angular speed
of Mi is defined as α̇i =

∏i−1
k=0 pk where pk = kPk/kRk is the

pulley ratio of moduleMk. Based on this relationship, we optimize
for the linkage parameters, the angular speed α̇1 of the root module,
and the pulley ratios pi of each remaining module in the chain.

We apply a two-step optimization procedure to minimize EΦi . In
the first step, given α̇1 and pi, we solve for the linkage parame-
ters bi, ci, gi, θi(0), φi(0) of each module. In the second step, we
use the computed linkage parameters to update α̇1 and pi across
all the bones in the chain. In both of these steps, we minimize the
non-linear error function given in Equation 3 with respect to the



constraints involving the linkage parameters described in the previ-
ous section. We use the SQP method implemented in the MATLAB
Optimization Toolbox to solve these optimization problems, which
typically converges in 5-10 iterations.

The non-linearity of the objective function defined in Equation 3
mandates a good initialization of the optimization variables to ob-
tain a valid minimum. Since we are considering periodic motions,
we employ a frequency-space analysis for this purpose. More pre-
cisely, we initialize the motion parameters using a Fourier decom-
position on the rotation angles of each bone in the chain. The mo-
tion of each bone is then approximated using the Fourier component
of highest magnitude as

Φ(j) = µ ∗ cos(2πf(j/n) + ρ), (4)

where µ represents the magnitude, f represents the frequency, and ρ
represents the phase of the Fourier component. This cosine function
represents the change in rotation of the output crank of the four-bar
linkage as the input crank completes one full rotation cycle in n/f
frames. Assuming a fixed initial orientation θi(0) of the input of the
linkage, each sampled value of j corresponds to a desired pair of in-
put and output crank rotation angles (θi(0)+2πj(f/n),Φ(j)). We
sample 3 such angle pairs which uniquely specifies a set of link-
age bar lengths that interpolate the sample points [Freudenstein
2010]. We initialize α̇1 as 2π(f1/n) where f1 is the frequency of
the Fourier component approximating the rotation of the first bone
in the chain. We assume the initial values for the pulley size ratios
are pi = (2π(fi/n))/(2π(fi−1/n)).

To prevent having too short or too long bars upon scaling of the
four-bar linkage, we add an additional energy term to penalize large
ratios between the bar lengths. Specifically, we define the following
relations between the bar lengths:

κi =
bigi cos(θi(0))−gici cos(φi(0))+bici cos(θi(0)−φi(0))

(bici)

λi = gi/bi

µi = gi/ci

and add the energy term below to the first step of the optimization:

Eibar =

(
κi−

1

κi

)2

+(λi−1)2+

(
1

λi
−1

)2

+(µi−1)2+

(
1

µi
−1

)2

Finally, in order to reduce drift in the motion of the links over time,
we introduce a periodicity constraint in the second step of the op-
timization. Specifically, assuming the provided motion sequence
contains one cycle of the desired motion, the period of the overall
motion is n frames. Each oscillation module should return back
to its initial state at the end of the motion cycle. Thus, the peri-
odicity of each bone in the chain is an integer divisor of n, and
the input crank of the corresponding four bar linkage should be ro-
tated by an integer multiple of 2π, 2πmi during the given motion
cycle. In addition to the propagated input rotation parameters, we
also solve for these discrete multipliers mi. However, since both
EΦ and the constraints defined in Section 3.1 are non-linear, we
treat mi as a continuous variable and adopt a branch and bound
strategy to round them to integer values. Specifically, starting at
the root module, at each iteration we round mi to bmic and dmie
and choose the value resulting in smaller optimization error. We
observed that duplicating the input motion several times (10 in our
experiments) and running the motion approximation to this longer
cycle improves the approximation results while still satisfying the
periodicity constraints.

3.3 Layout: kinematic chains

Given a simplified motion, the next step is to compute layout pa-
rameters for the oscillation modules of each kinematic chain that
match both the target motion parameters and relative bone lengths
of the input figure as closely as possible. As described in Sec-
tion 3.1, the layout is defined by continuous parameters (ωi, sli ),
discrete parameters (kDi , kPi , kRi , kQi ), and the binary indicator
variables for the pulley part sizes. Thus, we use mixed-integer pro-
gramming to search over the space of possible solutions.

Energy function

Our energy function encodes several desired properties for the lay-
out of each kinematic chain.

Propagated rotation. At the end of the motion parameter optimiza-
tion step, we have computed a desired angular speed α̇1 driving the
root module M1 of each chain and the ratios of the pulley wheel
radii, pi, that specify how the input rotation should be propagated
to the remaining modules in the chain. Several layout parameters
determine the actual values of α̇1 and pi in the final automaton. In
our designs, the input crank of the automaton drives an input gear
whose rotation is propagated to the driving gear D1 of each root
module M1. Thus, the angular speed driving M1 can be expressed
as α̇1 = αIkI/kD1 where αI is the constant angular speed of the
automaton input crank, kI is the tooth count of the input gear, and
kD1 is the tooth count of D1. The pulley ratios pi can simply be
expressed as kPi/kRi (i.e., the ratios of the corresponding pulley
wheel tooth counts).

Based on these expressions, we add the following energy term to
penalize deviations from the desired angular speed and pulley ra-
tios:

Eroti =

{
(α̇IkI/kD1 − α̇1)2 if i = 1

(kPi/kRi − pi)2 if i > 1
(5)

Pulley belt length. In our oscillation module design, the wheels
of each pulley, Pi and Ri, are attached to the axles at either end
of link li−1 (see Figure 3b). Thus, we can express the tooth count
(i.e., length) of the pulley belt kQi in terms of the tooth counts of
the pulley wheels, kPi and kRi , and the length sli−1 of link li−1:

kQizp = zp(kPi + kRi)/2 + 2sli−1 , (6)

where zp is a constant defining the distance between two consecu-
tive teeth of the pulley wheels or belt.

The pulley wheels P1 and R1 that drive the second link l2 of each
chain are part of the root module M1. Since M1 is attached to the
main support structure of the automaton rather than a link in the
chain, the tooth count kQ1 of the pulley belt Q1 is not constrained
by the length of a link. Instead, kQ1 depends on the tooth counts of
the pulley wheels, P1 and Q1, the input gear D1, and the distance
ω1g1 between the fixed pivots of B1 and C1:

kQ1zp = zp(kP1 + kR1)/2 + 2(zpkD1 + ω1g1) (7)

In practice, a small amount of slack in the pulley belt does not pre-
vent the mechanism from functioning properly. Therefore, instead
of treating the above equalities as hard constraints, we define an
energy term to penalize the difference between the belt length kQi

chosen from the discrete set of available options and the ideal belt
length defined by the layout of the mechanism:

Epuli
=

(kQi
zp−zp

kPi
+kRi
2 +2(mpkDi−1

+ωi−1gi−1)−ε)2 if i = 1

(kQi
zp − zp(kPi

+ kRi
)/2 + 2sli−2

− ε)2 if i > 1
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Figure 6: The basic components of our automata. From left to right: Four-bar linkages transfer a rotational motion into an oscillating
one. Belts and pulleys are used to propagate the input rotation along the kinematic chain. An oscillation module joins these components
to represent one bone of the figure. Bevel gears change the orientation of the input rotation. Our optimization solves for the configuration,
dimensions, and placement of all these components to best approximate a given input motion sequence.

where we set ε = 1 to allow for the slack. Note that the pulley
part sizes referenced in this formulation are represented by the cor-
responding binary indicator variables as described in Section 3.1.

Link lengths. Each link in the chain should be long enough to
accommodate the parts attached to itself. However, in order to pre-
serve the shape of the input figure, the length sli of each link should
also match as closely as possible the corresponding relative bone
length sbi . The dimensions of the bones are defined up to a scale
using a free scale variable ξ. Thus, the desired length of each rigid
link is sli = ξsbi . To penalize the deviations from the original bone
lengths, we add the following term to our energy function for each
link:

Esli = (sli − ξsbi)
2

We further desire symmetric bone pairs (e.g., left and right upper
leg bones) to have similar lengths. For each such symmetric bone
pair, we penalize the differences between the corresponding link
lengths as,

Esij = (sli − slj )2.

Combined energy function. We combine all the energy terms for
each link li in each serial chain cj to obtain the final energy func-
tion:

E =
∑
cj

∑
li∈cj

wrotiEroti+wpuliEpuli+wsliEsli +
∑
i,j∈S

wsijEsij ,

where S denotes symmetric bone tuples and wroti , wpuli , wsli ,
and wsij are the weights for each energy term. In our examples, we
set wroti and wpuli to 5 and set wsli and wsij to 1.

Mixed-integer progamming

Given the energy function E and all the linear hard constraints
described above, we formulate the optimization as a mixed inte-
ger programming problem and solve it using a branch-and-bound
technique. More specifically, we use the constrained mixed-integer
solver CoMISo [Bommes et al. 2012] that provides a wrapper to the
Gurobi solver [Gurobi Optimization 2012]. During the optimiza-
tion process, the solver treats the discrete unknowns as continuous
variables and generates a solution where these variables have frac-
tional values. The solver then constructs a search tree where each
branch represents the result of constraining a discrete variable to
either the floor or ceiling of its fractional value from the continu-
ous solution. In our experiments, this optimization process takes
around 100 seconds to find a feasible solution for a problem with
360 binary, 10 integer, and 10 continuous variables. The result of
the optimization is a set of layout parameters that fully define the
size of the mechanical parts in each oscillation module.

(a) parallel-plane
                 layout

(b) multi-plane
             layout

Figure 8: The input crank rotation is propagated to the root module
of each chain using pulleys. For multi-plane layouts, we also use
bevel gears (right).

3.4 Layout: unified design

The final step in our pipeline composes all the kinematic chains into
a unified design that can be driven by a single input crank. This
process involves choosing the orientation and position of the crank
and then generating mechanisms that propagate the crank rotation
to the root module of each moving chain in the automaton. In our
designs, we attach the input crank to the torso link of the figure and
use pulleys and bevel gears (if necessary) to propagate the rotation.
We arrange these pulleys and bevel gears on the stationary torso,
head and (in some cases) shoulder links based on the orientations
of the motion planes for the moving limbs.

Parallel-plane layout: If the motion planes of the moving limbs
are all parallel to either the saggital or coronal planes of the figure,
we orient the input crank, torso and head links parallel to the mo-
tion plane (see Figure 8(a)). Recall from Section 3.1 that the root
module of each chain must be placed on one of the stationary links.
We position the root modules of the arms on the head link, and we
put the root modules of the legs on the torso link. Finally, we use
pulleys to connect the input crank to the driving gear of each root
module. If the limbs move parallel to the saggital plane, we posi-
tion the pulleys on the left and right sides of the torso/head links,
and for coronal plane motion, we put the pulleys on the front and
back sides of the torso/head links.

Multi-plane layout: If the motion planes of the moving limbs are
all parallel to the transverse plane, or if the motion planes are not
all parallel to each other, we incorporate bevel gears into our unified
design (see Figure 8(b)). If all of the non-tranvserse motion planes
are parallel to the coronal plane, then we orient the input crank,
torso and head links parallel to the coronal plane as well. Other-
wise, we orient these components parallel to the saggital plane. We
orient the root module of each chain so that its rotation plane is par-
allel to the rotation plane of the input crank. As in case 1, we place
the root modules for the arms and legs on the head and torso links,



Figure 7: Physical prototype of dancing motion sequence. (Please refer to the supplementary video.)

respectively. For chains whose motion plane is orthogonal to the
rotation plane of the input crank, we use bevel gears to convert the
rotation of the root module output crank C1 and pulley wheelR1 to
the appropriate motion plane.

Special case: Where the motion plane of an arm is parallel to the
coronal or transverse plane (as in the dancing example in Figure 9)
we use the shoulder link as an additional support structure to ac-
commodate the root module of the arm. We orient the shoulder to
be parallel to the motion plane of the arm, and if the input crank
rotates in a different plane, we add a bevel gear configuration to
convert the input crank rotation to the appropriate motion plane.

4 Evaluation

Data sets. In order to evaluate how well our planar motion sim-
plification algorithm approximates various human motions, we an-
alyzed a large number of mocap sequences from existing databases.

We first trace the path Xi = {xi(1), xi(2), ..., xi(n)} of the end-
point of the ith bone of a kinematic chain cj at each frame of
the input motion. We compute the common least squares plane
Pj(n, d) of all such paths for cj . We then measure the fitting
error as the deviation from a planar motion over n frames as
Ej :=

∑
bi∈cj

∑
n(n · xi(n) + d). In order to account for dif-

ferences in the lengths of the paths traced by each bone, we nor-
malize the error by the total length of the paths, measured as
mj :=

∑
bi∈cj

∑
n ‖xi(n + 1) − xi(n)‖. The final planar fit-

ting score of the motion is then computed over all the chains as
Mp := minjmj/(Ej + ε) with ε = 0.01 used as a regularizer.
Essentially, Mp measures how well a non-trivial motion can be ap-
proximated using a set of planes, one for each chain.

We tested our algorithm on a total of 80 mocap sequences from
the CMU motion database. We found the following motion types
(about 40% of the database) to be well suited for our algorithm:
walking, running, jogging, exercising, waving, drinking as they
consistently get high scores (Mp > 10). We call them good motion
types. On the other hand, sequences like swimming, swordplay,
fishing (Mp < 2) contain large out-of-plane motions, and hence our
algorithm cannot replicate them faithfully. In Figure 9, we present
representative realizations for some of the good motion types (see
also the accompanying video).

Simulation. Our system produces a mechanical automaton de-
sign for a given input motion. We simulate the mechanism using

forward kinematics to qualitatively validate how faithfully the se-
quences recreate the input motion. Specifically, we build a mech-
anism graph G = (V,E), where each node vi ∈ V represents a
part (e.g., a gear or a pulley) and each edge eij ∈ E connecting the
vertices vi and vj represents the relation between the correspond-
ing parts. In our setup, the typical relations include the coaxial or
parallel-axis properties of the gears, and the motion chains compris-
ing of pulleys and four-bar linkages. At every frame of the motion
sequence, we assume that the input crank rotates clockwise with a
constant speed. We propagate this rotation along the edges of the
mechanism graph to compute the position and orientation of each
component in the mechanism. Note that by construction, the graphs
are free of any loops.

Fabrication. We fabricated automata for two of the designed se-
quences, one for each of the major types of layout configurations:
the walking sequence (see Figure 1), which does not require any
bevel gears; and the dancing sequence (see Figure 7), which in-
volves motion in two different planes. We used off-the-shelf pieces
for the bevel gears, pulleys, and pins. The linkages and gears were
laser cut based on the dimensions as prescribed by our optimiza-
tion. The most time consuming part was assembling the pieces,
which was done manually. However, given that our design con-
sists of similar modular components (i.e., the oscillation modules)
the assembly process was relatively straightforward (albeit some-
what tedious). Finally, we used a single speed motor to drive the
automata. Figure 1 and 7 and the supplementary video show our
fabricated automata in motion. Note how subsequent joints oscil-
late at different phases and with different periods.

Results. Figure 9 shows the mechanical automata generated by
our system for several motion sequences. For each motion type,
several snapshots of the original animation and the corresponding
simulation frames are provided. Our system generates automata
consisting of a chain of oscillation modules driven by a single ac-
tuator. While the use of standard planar mechanical components
simplifies the fabrication and assembly processes, there are aspects
of certain motions that our method fails at reproducing accurately
(see the accompanying video).

In all of our example automata the torso of the figure has been used
as the main support structure. In the dancing example, the shoulders
have been used as an additional support structure since the arms
move parallel to the transverse plane of the figure. As described
in Section 3.4, to propagate the rotation of the driver gear to each
kinematic chain, pulleys are used to fill up the space between the
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Figure 9: Example automata generated by our system. For each example, snapshots of the original motion sequence in different time frames
(denoted by the numbers) and the corresponding simulation result of the automata are given. The bevel gear configuration used in the
ballerina sequence is shown in orange.



(a) captured motion (b) generated automaton

Figure 10: Commercial motion sensing input devices such as the
Microsoft Kinect enable direct capturing of input motions to our
system. A snapshot of the captured motion sequence (a) and the
generated automaton (b) is shown.

driver gear and the root of the chain along the support structure.

While bevel gears enable mechanisms with arbitrary orientation of
motion planes for different kinematic chains, such gears can be dif-
ficult to manufacture depending on the fabrication method. For ex-
ample, it is not possible to create bevel gears with a standard laser
cutter. In motion sequences where different kinematic chains move
in nearly-parallel planes, the use of bevel gears can be avoided
by mapping the input sequences to motions restricted to parallel
planes. In the walking, exercising, and jumping jack examples, we
show that plausible motion approximations can be generated de-
spite this restriction. However, in the dancing automata, the use of
bevel gears is necessary since the arms move in an orthogonal plane
to the legs.

In our examples, we have primarily used motions selected from
the existing motion databases as input. However, recent advances
in commercial motion sensing input devices such as the Microsoft
Kinect enable easy tracking of the human skeleton and thus provide
an interface to directly capture input motions. We demonstrate the
flexibility of our input requirements with the kendo sequence (see
Figure 10 and the supplementary video). To produce this result,
we used the Kinect to record a performance, extracted the human
skeleton with the commercial tool ipi Soft [2013], and then used the
skeleton motion as input to our system.

User control. Although our system has a fully automatic mode,
the user can also control the final design in various ways.

(i) Depending on the target fabrication method, the user can provide
additional constraints. Based on the specification of our laser cutter,
we used minimum and maximum gear tooth counts of 14 and 80
(given a 1mm tooth size). These constraints have a direct effect
on the realization of the desired motion, specifically for links that
require a large change in input angular speed.

(ii) Our system restricts the motion planes of the limbs to be parallel
to the saggital, coronal or transverse plane of the figure. The user
can also manually specify the motion plane orientations. We use
the automatically generated motion planes in our results.

(iii) Finally, the user can set a threshold for the minimum angular
range for the motion of the bones (0.35 radians in our results). We
set bones oscillating with an angular range less than this threshold
to be fixed, thus reducing the complexity of the generated mecha-
nisms.

Limitations. Our algorithm has several limitations:

(i) Since our automata are based on predominantly planar link-
ages, our initial planar projection step for each kinematic chain can
significantly distort certain types of mocap sequences (e.g., swim-
ming). Further, in order to simplify the fabrication/assembly pro-
cesses, we generate automata driven by a single actuator that use
standard planar mechanical components and standard bevel gears.
These decisions impose additional constraints in the motion ap-
proximation step of our method. Better approximations can pos-
sibly be obtained by adding other types of mechanical elements
(e.g. non-circular pulleys) at the cost of increased complexity of
the optimization and the resulting automata.

(ii) We assume periodic motions as input to allow driving the au-
tomaton indefinitely with a constant-speed input rotation. While
we did not observe noticeable drift for extended operation of our
assemblies, machining imprecisions or mechanical wear could po-
tentially cause temporal deviations that over time reduce the accu-
racy of the motion approximation. At a certain point, the automaton
might have to be partially disassembled to re-align the parts to the
original configuration.

5 Conclusion

In this paper, we have presented an algorithm to automatically real-
ize a mechanical automaton starting from an input mocap sequence.
Our work includes three main contributions. We introduce an os-
cillation module design that can generate kinematic chain motions
with links that oscillate at different phases and frequencies. We
also describe a motion approximation algorithm that converts an
input sequence to a mechanically realizable motion. Finally, we
present an automated method for determining the parameters and
spatial layout of mechanical parts that takes into account physical
and fabrication constraints. Our results demonstrate that our pro-
posed approach can generate mechanical automata that reproduce
non-trivial human motions with multiple moving limbs.

We see several interesting avenues for future work:

Perception of human motion: In the motion approximation part
of our method, we use an objective function based on the rotation
angles of each joint. Our intuition is that the changes in joint angles
have a significant effect on how we perceive a motion since they are
visually well exposed in the static body posture. Developing better
perceptual metrics for comparing human motions is an interesting
avenue for future work.

Joint optimization of motion and layout parameters: Our current
method optimizes for the motion parameters of the mechanism first,
and then solves for the layout of the parts. It is possible that a joint
(or perhaps iterative) optimization of these parameters could pro-
duce better motion approximations in the final automaton designs.

Self-standing automaton: It would be interesting to consider the
design of self-standing mechanical figures that remain balanced
while they move. Generating such automata would require a
method that accounts for both the stability of the design as well
as the target motion. One challenge here is that the placement of
mechanical components (e.g., gears, linkages) affects the weight
distribution and thus the stability of the automaton.

Integrated designs: It might be possible to fabricate automata with
embedded movable parts that do not require assembly. If the goal
is to place all of the mechanisms within the volume of the figure,
this would likely require very compact arrangements of mechanical
parts.

Extension to other mechanism types: The basic building block of



our design is a planar four-bar mechanism, which is a very common
type of linkage. Our motion approximation and parameter opti-
mization algorithms can be useful in designing a variety of linkage-
based mechanisms (e.g., windshield wipers, vehicle suspensions,
moving parts in industrial machinery, path tracing mechanisms,
etc.). Furthermore, by specifying different constraints between the
lengths of the linkage bars, our method can be adapted to handle
other types of linkages, such as slider-crank and folding linkages.
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BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
Proc. ACM SIGGRAPH 31, 4, 47:1–47:9.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2012. Practi-
cal mixed-integer optimization for geometry processing. In Intl.
Conf. of Curves and Surfaces, 193–206.
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