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Abstract

As collections of 3D models continue to grow, reusing model parts allows generation of novel model variations.
Naïvely swapping parts across models, however, leads to implausible results, especially when mixing parts across
different model families. Hence, the user has to manually ensure that the final model remains functionally valid.
We claim that certain symmetric functional arrangements (SFARR-s), which are special arrangements among
symmetrically related substructures, bear close relation to object functions. Hence, we propose a purely geometric
approach based on such substructures to match, replace, and position triplets of parts to create non-trivial, yet
functionally plausible, model variations. We demonstrate that starting even from a small set of models such a
simple geometric approach can produce a diverse set of non-trivial and plausible model variations.

1. Introduction

Geometric design remains challenging. For most users, 3D
modeling from scratch is tedious, cumbersome, difficult, and
often not a realistic option. Alternatively, new models can
be created by reusing existing parts. The key challenge is
to create novel, non-trivial, and interesting variations, while
still maintaining functional plausibility.

Model collections have grown in popularity with the avail-
ability of online 3D model repositories (e.g., Google Ware-
house, Turbosquid, etc.), especially for man-made objects.
Various automatic and semi-automatic approaches have been
proposed to organize and consistently segment models of
such collections, leading to interesting reuse possibilities
(e.g., [ARSF09, WAvK∗12]). Naïve methods to interchange
model parts can easily fail: random swapping of parts
quickly destroys model plausibility, or even text label-based
part replacement can lead to inconsistency, e.g., a ‘mug han-
dle’ is different from the ‘handle’ of a racket. Hence, re-
searchers have proposed a mix-and-match by swapping parts
based on geometric similarity only [FKS∗04], or considering
both geometric similarity and contact information for part
replacements [KJS07]. The task of content creation, how-
ever, remains difficult since the user has to carefully control
the final shape to ensure its plausibility.

In another approach, probabilistic models are learned
from training datasets to encode part-based composi-
tion [CKGK11, KCKK12]. Subsequently, model synthesis
amounts to sampling from such probabilistic models. These

Figure 1: Starting from only three models (top), our al-
gorithm detects and exploits symmetric functional arrange-
ments (SFARR-s) to generate more than 20 variations. Many
of the variations have strong geometric differences, but still
preserve the object sub-structures and functionalities.
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Figure 2: Algorithm overview. Given two (pre-segmented) shapes (a), we extract and encode mutual part relations (e.g.,
symmetry, contact, and support) in the form of relation graphs (b). Next, certain compatible symmetric functional arrange-
ments (SFARR) are detected in each graph (shown by boxes in both graphs) and subsequently reshuffled to produce model
variations. Note that even two models can produce dozens of variations (c), yet the synthesized models remain plausible.

methods, however, require a moderate to large number of
part-labeled models for training. Furthermore, while the
methods are good at producing probable and expected vari-
ations for classes of learned models (e.g., 4-legged animals,
battleships, etc.), they cannot reuse parts across different
model families (e.g., a play horse and a bus stop).

Starting from only a small number of (segmented) mod-
els, our goal is to create a large number of non-trivial model
variations that are also functionally plausible. This is chal-
lenging since functionality is rarely explicitly encoded in the
raw geometric descriptions. We make two observations that
simplify the problem: (i) structure (e.g., contact, symmetry,
arrangements, etc.) rather that the actual geometry of the
parts is critical for model reuse; more importantly, (ii) cer-
tain sub-structures often relate to actual functionality of the
models. Hence, even objects from different categories that
share common sub-structures (e.g., legs of tables and chairs)
can be reused to produce novel models with functional va-
lidity (see Figure 1). Further, beyond symmetry relations,
certain mutual arrangements of parts, as captured by such
sub-structures, often are vital for object functions.

We first abstract each input 3D model, assumed to be pre-
segmented, into a graph where nodes denote parts and edges
capture relations among part-pairs. Note that unlike other
methods, we do not require part labels or part-level corre-
spondence. Instead, we hypothesize that certain prescribed
subgraphs, which we call symmetric functional arrange-
ments (SFARR-s), are often closely linked to the core func-
tionality of objects and hence are critical to the model plausi-
bility. Subsequently, our algorithm identifies such compati-
ble SFARR-s across model pairs, swaps the matched SFARR-
s, and finally resizes and positions the replaced SFARR-s us-
ing structural cues to create valid model variations.

We demonstrate the performance of our algorithm in cre-
ating large numbers of in-class and across-class variations.

Our tests indicate that such a direct approach focusing ex-
clusively on structural similarity at the level of SFARR-s is
surprisingly sufficient to produce novel and non-trivial varia-
tions that look functionally plausible. Our user study reveals
that most users found most of the automatically generated
variations to be interesting and plausible, while only a small
number of across-class variations were found to be too ex-
treme and unrealistic.

2. Related Work

Data-driven 3D creation. In a seminal effort, modeling by
example [FKS∗04] proposed a mix-and-match approach to
combine model parts for creating new models. Parts were
replaced based on geometric similarity with the example
parts (or proxy boxes) with the user having the option to
guide selection, placement, and scaling of the parts. Later,
the Shuffler system [KJS07] used contact relations to con-
sistently co-segment models to facilitate such part-level re-
placements. The task of content creation, however, remained
difficult since the user needed to have a good idea of the
shape of the final model.

Recently, as model collections grew, researchers have
focused on data-driven content creation. In a recent sys-
tem [CK10], artists create rough 3D content that is then en-
hanced using customized examples. The system uses com-
ponent matching and shape retrieval to facilitate the process.
In followup efforts, probabilistic models were learned and
used for suggestion generation for assembly-based model-
ing [CKGK11] or generating shape variations from exist-
ing ones [KCKK12]. While the results are impressive, the
methods assume the availability of large (labeled) training
sets consisting of 10-100 models and cannot combine parts
across model families.

Bokeloh et al. [BWS10] analyze models to extract po-
tential docking sites leading to interesting inverse procedu-
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ral modeling possibilities. Xu et al. [XZZ∗] propose photo-
inspired creation of 3D models by deforming parts using im-
age silhouette constraints. Jain et al. [JTRS12] present an in-
teresting solution to create new interpolated shapes by com-
bining parts retrieved from objects based on hierarchy anal-
ysis. In another effort [XZCOC12], shape structures among
the same class are exploited to generate shape variations
based on fit-and-diverse rules. These methods assume ac-
cess to labeled parts, or explicit part correspondence, and
are targeted to create variations in the same category of ob-
jects. Instead, we directly exploit SFARR-s to identify inter-
changeable parts both intra- and inter-classes, while largely
preserving functional plausibility.

Exploring shape collections. Growing volumes of 3D data
sets have opened new data exploration possibilities. Early
leads in this direction were provided by the ShapeAn-
notator framework [ARSF09] where an intuitive interface
helps the user in the creation of a part-based shape ontol-
ogy. ‘more recently, researchers have extracted low degree
of freedom deformation to discover shape common struc-
tures [OLGM11] or diffused correspondence to organize
model collections [KLM∗12]. We also rely on common sub-
structures. Our analysis, however, is purely geometric based
on SFARR-s yielding interesting and novel variations, most
of which are plausible.

Shape analysis. Given the close relation between form and
function, it is not surprising that relations and symmetries
are dominant in man-made objects. Various methods have
been proposed to extract such high level abstractions and
hierarchies (see survey [MPWC12]). Such high level rela-
tions have been used for smart shape editing [GSMCO09,
ZFCO∗11], co-segmentation [WAvK∗12], and upright ori-
entation identification [FCODS08]. In our work, we also ex-
ploit shape structure analysis for exchanging parts, but focus
on more general shape characteristics using SFARR-s.

3. Symmetry Functional Arrangement (SFARR)

Form follows function, which inspired many in industrial de-
sign and modern architecture, suggests that form-finding is
primarily driven by the intended function of objects [Sul96,
Gre58]. As a result, certain arrangements of parts are consis-
tently observed across objects with similar functions, though
the objects can be very different in form (e.g., most func-
tional chairs have legs supporting the seat from below).
Hence, we hypothesize that preserving such special arrange-
ments among parts (i.e., part substructures) in the course of
model creation maintains the object functionality, and hence
its plausibility. In this attempt, we identify such functional
substructures for the purpose of part reshuffling.

In our approach, we leverage mutual (geometric) rela-
tions among different arrangements of shape parts to identify
component-level compatible functional substructures that
can be interchanged across different objects towards object

Figure 3: Examples of three types of predefined SFARR-s :
support, embed, and placement.

creation. Such functional substructures should ideally be:
(i) commonly occurring in objects with similar functions,
and (ii) characterized by geometric relations among the ob-
ject parts. In a first attempt, we define one particular form
of such substructures that we term symmetry functional ar-
rangements (SFARR).

We define SFARR as a triplet of shape parts, where two
are coupled via symmetry, while the third part connects them
(see Figure 3). For example, the two supporting legs and the
table top, as shown in Figure 3-top, form such a triplet, or
SFARR. Since symmetry is ubiquitous in man-made objects,
such simple forms of substructures are dominant in many
man-made objects (see Figures 1, 5, and 12).

While such SFARR-s are common in man-made environ-
ment, they can be non-trivial to detect and replace (see Fig-
ure 3). Naïvely interchanging them, especially across objects
of different families, can potentially generate an exponential
number of invalid objects. Hence, we first carefully examine
and classify SFARR-s according to their functions based on
the mutual relation of the two symmetric parts with the third
one. Specifically, we define three types: support SFARR, em-
bed SFARR, and placement SFARR , respectively (see Fig-
ure 3) assuming we know the upvector. Let us denote the
three elements of a SFARR triplet as S, O, and S, where S-
s are the symmetric parts, and O connects to both S-s. By
support, we mean O touches both S-s at their top faces; by
embed we mean O is attached to vertical side faces of the
two Ss, and by placement we mean two S-s are supported by
the top face of O. We found these SFARR-s to be surprising
expressive and focus on them, although alternative substruc-
tures can potentially be defined and added to the framework.

These SFARR types still do not fully characterize poten-
tial object functionalities. For example, in Figure 4, although
the two supporting stands of the piano (left) and the two legs
of the table (middle) both support SFARR-s, they are not-
interchangeable as they do not perform the same physical
functionality (one combination stands, while the other is un-
stable and topples).

To identify such potential functionality of SFARR-s, we
propose two simple additional attributes: (i) We classify a
SFARR to be stable if it does not topple. We test stability
by checking if the projection of its center of mass on to the

c© 2013 The Author(s)
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Figure 4: Additional attributes for further verifying func-
tionality of SFARR-s to ensure interchangeability. We check
for stability by verifying if the projected center falls within
the convex hull of the ground-touching points of the SFARR

parts (left, middle); and if the parts lie on a common
axis (right).

ground falls inside the convex hull of its ground-touching
vertices; (ii) We classify a SFARR as coaxial if its three parts
are coaxial and the symmetric parts are cylindrical (e.g., the
component O resembles a rotational axis with two Ss, such
as tyres of a car). We validate if the symmetric components
are cylindrical by primitive fitting (e.g., see [ZFCO∗11]).
Later, we ensure that coaxial SFARR-s are replaced only by
other coaxial SFARR-s.

By defining SFARR types and their attributes, we enable
replacement of part triplets while maintaining object func-
tionality. They also simplify their comparison during re-
placement since we only have to examine the graph substruc-
tures with matching SFARR-s both in type and attributes. We
focus on the two attributes (i.e., stable and coaxial), which
according to our observation, are critical and prevents most
of the common functionally implausible arrangements. Note
that multiple SFARR-s may share common elements (Fig-
ure 9) to form clusters of SFARR-s. In Section 6, we describe
how to handle such clusters.

4. Algorithm Overview

Our algorithm runs in two main stages, an off-line analysis
stage and an online reshuffle stage. In the analysis stage, we
extract the mutual relations among object parts and encode
them as a spatial relation graph. We then identify all SFARR-
s in each object, classify their types, and associate them with
attributes. Next, groups of SFARR-s are identified and their
attributes examined. We also globally align the shapes to a
common orientation to facilitate subsequent part reshuffling.

In the reshuffle stage, the constructed spatial graphs along
with the SFARR-s are utilized to generate shape variations
with potentially large geometric variations, while preserving
object functionality. Note that we allow part reshuffling even
across different shape families (where part names are inef-
fective), as long as the SFARR-s are compatible.

At runtime, we identify compatible SFARR-s and estab-
lish correspondence across them. Next, we order the compat-
ible SFARR-s for potential replacements. Before replacing

Figure 5: The spatial relation graph. Each component cor-
responds to a node. Graph edges are attributed as supportive
and embedding. Symmetric nodes are in the same color.

a single sFARR, we also check its compatibility and graph
structure (i.e., relations) to ensure model validity. Having de-
cided on a replacement, in a constrained optimization set-
ting we solve for the best transformation to properly fit the
retrieved parts to their new positions, using both topolog-
ical and geometrical constraints (see Figure 2). Note, here
we benefit from part-proxy level optimization as proposed
in [ZFCO∗11].

5. Pre-processing

In the off-line stage, we start with models from different
shape families, each assumed to be segmented into meaning-
ful parts. Note that we do not require the parts to be labeled
or having correspondence across different models. Recent
advances in semi-automatic annotation/co-segmentation al-
gorithms provide access to such pre-segmented data (see
[ARSF09,WAvK∗12] and references therein). For our exper-
iments we used a dataset comprising of tables, chairs, cars,
beds, sofas, lamps etc, where symmetries are abundant. For
example, in Figure 5, the chair is decomposed into six parts,
each representing a semantic part such as chair leg, chair
back, chair seat, etc. Further, we allow the user to interac-
tively group some of the components into semantic mean-
ingful parts (see also [XZCOC12]).

We focus on man-made objects and assume them to have
up-right orientations [FCODS08]. Since we do not have cor-
respondence information among different objects parts and
to facilitate subsequent reshuffling (e.g., prevent front-facing
from being replaced with back-facing), we first consistently
align each object to a common facing orientation. Specif-
ically, we use the global reflection plane of each object to
align all models with the computed reflectional plane. To
address the flip problem (i.e., the problem of back-facing or
front-facing), we employ a simple graph-based formulation
(see Section 5.2). The user can override the automatic sug-
gestions, if necessary.

5.1. The Spatial Relation Graph

We first abstract the geometric structure (and SFARR-s) as
a relation graph to facilitate subsequent analysis and part
reshuffling. For each object, we create a spatial relation
graph, where a node is a part and directed edges represent
relations among pairs of parts. Further, we analyze the rela-
tion types and classify them using the SFARR types. Figure

c© 2013 The Author(s)
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5 shows an example: the legs of the chair and the seat are
connected with a directed support edge, where the direction
points to the component that is being supported. Note that
placement is opposite of support and hence represented by
the same type of graph edges. We do not explicitly encode
relations like parallelism, coplanarity, or concentricity, but
consider them implicitly during part placement optimization.
For example, if a part being replaced is coaxial with an ex-
isting part, we constrain the existing parts and the new part
to be coaxial during optimization [ZFCO∗11].

In our implementation, we mark two components a and
b to be connected iff they are touching each other at some
points or share common vertices. A component a is marked
to support another component b iff they are in contact and
a is under b. We detect symmetry relations between part
pairs using the method of [MGP06]. Figure 5 shows rela-
tion graphs constructed for a chair and a counter model. We
also mark a graph node as ground-touching node if its corre-
sponding component touches the ground plane (i.e., lowest
in height).

5.2. Graph-based Orientation Rectification

The connectivity of the relation graph abstracts the topology
of part connections and symmetry relations (see Figure 5).
To find the correct orientation of the part to be placed in,
we need consistent orientation. Although we have the global
symmetry plane to rectify the upright orientation, ambigui-
ties can still arise due to symmetry flipping, i.e., front facing
vs. back facing. We now address this problem as a simple
labeling problem.

Each graph has two choices of orientation (by flip) as the
choices for spatial graph Gi. Hence there will be a total 2n
possible labels if we have n graphs to rectify. Let us denote
the labels to be {l1, l2, ..., ln}, where n is the number of ob-
jects in the category and li denoting flip/no-flip. If there is
only a single object, the choice is arbitrary. However, when
there are multiple objects to be consistently aligned, we de-
fine a labeling cost as the matching distance between two
graphs:

P(Gi ⇀ li,G j ⇀ l j) = dist(Gi,G j). (1)

The best alignment is found as the minimum value of pair-
wise matching cost using a MRF formulation. To define
distance between two relation graphs, i.e., dist(Gi,G j), we
solve a graph assignment problem using the Hungarian al-
gorithm based on the Euclidean distances between the cen-
troids of nodes of the spatial relation graphs. Figure 6 shows
an overview of the process. Note that we perform this align-
ment only across objects from the same family. For objects
from two different families, the user manually aligns a pair
(one coming from each family), thus assigning a consistent
alignment among all model pairs.

Figure 6: Model orientation rectification with MRF label-
ing. Each model has two orientation possibilities. The cost
function (pairwise term) measures the matching distance be-
tween two objects (in terms of graph distances).

6. SFARR-based Parts Reshuffle

A natural way to mix objects is to identify compatible sub-
graphs among two relation graphs, e.g., subgraphs with the
same structure and being functionally compatible. In this
work we only focus on SFARR-based substructures, which
consistently seems to result in compelling variations. In this
section, we describe how we identify, group, replace, and
position triplets of parts using SFARR-s.

6.1. Identify Compatible Symmetry Triplets

To synthesize from a set of shapes, we first identify SFARR-s
in all the relation graphs and find compatible SFARR-s within
these graphs. Given two graphs, Gi and G j, for each SFARR

si
k ∈ Gi, we first identify all its compatible SFARR-s in G j .

Two SFARR-s are defined to be compatible iff the following
conditions hold (Figures 1 and 2): (i) they are of the same
type, i.e., support, embed, or placement; and (ii) their share
the same attributes, i.e., stable, or coaxial.

6.2. Group SFARR-s

When there are multiple SFARR-s sharing the same compo-
nents, we examine them with additional compatibility cri-
teria to prevent undesirable replacements. For example, in
Figure 9, the four table legs both support the table top and
being supported by the bottom slot, i.e., there are both sup-
port SFARR-s and placements SFARR-s. In this case, the legs
which are placement SFARR-s also act as support, hence
we probably would not wish to replace them with another
placement SFARR that cannot act as support, for example
like the candles shown in Figure 3. Thus, we add new func-
tional attributes to individual nodes in SFARR once they are
shared by multiple SFARR-s, i.e., when groups of SFARR-s
are found.

Let us denote the three types of SFARR-s as S (support),
E (embed), and P (placement), respectively. The operator
⊗ denotes that two triplets have common elements, i.e.,
X⊗Y ⇒ Z means two SFARR-s with types of X and Y share
common node(s), and their common node(s) will be associ-
ated with attribute Z (the nodes in each SFARR are originally

c© 2013 The Author(s)
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Figure 7: Different combinations of SFARR-s form clusters.
We define new functional attributes for elements in a SFARR

once it is shared by another.

assigned with the corresponding attributes). Now we define
the following rules (∅ means no attribute to be added):

P⊗P⇒∅ S⊗S⇒∅ E⊗E⇒∅
P⊗S⇒ P+S E⊗S⇒ E +S P⊗E⇒∅

Figure 7 shows six basic combinations. Note that if both the
symmetric components in a SFARR touch the ground, we
also add the S attribute to the two elements. Let the set of at-
tributes for nodes ni and n j be ∆i and ∆ j, respectively. Once
we add such functional attributes to the SFARR elements, we
define a SFARR node ni as replaceable by n j iff both of the
following holds:

• ∆i ⊆ ∆ j or (∆i \∆ j)∩{S,P}=∅
• ni and n j have the same number of contact slots (see Sec-

tion 6.4).

Note that we define a preference across the three types: S =
P ≥ E because the embed attribute has lower priority than
the other two attributes in relative occurrence in typical man-
made objects (see also Section 6.4 for contact compatibility).

When SFARR-s form shared elements, multiple SFARR-s
of the same type can further form new SFARR-s. Figure 8
shows such an example, where the original SFARR-s formed
by the four chair legs are not compatible to the foot rest of
the counter, but grouping them forms new compatible sup-

Figure 8: Groups of SFARR-s can form new SFARR-s, and
offers new possibilities for compatibility. The two pairs of
symmetry legs of the chair shares a common seat, grouping
the symmetries can lead to one single SFARR which is com-
patible to the foot rest of the counter.

Figure 9: Multiple SFARR-s can share common elements
leading to new functionalities of the shared elements.

port SFARR-s. In our algorithm, we identify all such possible
groups of SFARR-s and add them in part reshuffling, which
greatly increases the variations in the output.

6.3. Replace SFARR

Next, we search for SFARR replacements. Given a set of
graphs Ω and a graph Gi ∈ Ω, we first find all the SFARR-s
in Gi and their compatible SFARR-s in all the rest of G j ∈Ω

forming a set say Ξ
i. We then search for all possible SFARR

clusters in Gi and sort them by their sizes. Assume the list of
sorted SFARR clusters is {L1,L2, ...,Lk}. Within each SFARR

cluster L j, we use a greedy algorithm to sort the SFARR-s by
their compatibility to the SFARR-s in Ξ

i. For any two com-
patible SFARR-s tk ∈Gi and tl ∈G j, we measure their geom-
etry compatibility ϒ(tk, tl) based on how the parts got rela-
tively scaled, how the relative arrangement of the part triplets
changed in terms of subtended angles and mutual distances.
Specifically,

ϒ(tk, tl) = λ ·θ ·ϑ, (2)

where λ = Π
2
i=0Πt=x,y,zg(sk

t ,s
l
t) is the scale compatibility

between the corresponding nodes in tk and tl with g(x,y) =
1+ |x− y|/(x+ y) is a monotonic function and g(sk

t ,s
l
t) de-

notes the scale ratio of their corresponding i-th nodes in
t = x,y,z dimensions (measured as bounding box scales);
θ = g(θk,θl) is the angle ratio of the triangles that are
spanned by the bounding box centers of the three nodes in
the triplets; and ϑ = g(ϑk,ϑl) is the perimeter ratio of the
two triangles. The SFARR-s replacement is then performed
greedily, starting from the SFARR which has the minimum
value of ϒ(., .).

The cluster sizes along with the values of ϒ(., .) define
replacement order for all triplets in Gi. When a SFARR is
replaced, we tag all the nodes to prevent them from being
replaced again in the current round of reshuffling. For exam-
ple, in Figure 12 dozens of variations are generated starting
from only six models.

6.4. Position SFARR

Since we mainly considered topology and SFARR compat-
ibility rather that geometric coherence, we now warp the
placed-in components to make them cohesive with the cur-
rent model. Since the SFARR parts have different scales, we

c© 2013 The Author(s)
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Figure 10: Optimizing SFARR-s placement. The optimiza-
tion proceeds node by node. Each time a new node is identi-
fied and optimized with respect to the existing content.

handle the replacements of the three nodes individually. We
start by fixing all other parts that stay unchanged (i.e., not
being replaced) or already have been substituted, denote this
set of nodes as Λ. Then, to replace a SFARR ti, we first iden-
tify a node in ti, which is connected to the nodes in Λ. To
place it, we proceed similar to [KCKK12]. Specifically, if
node a is going to be replaced by node b, we find all nodes
in Λ that share a relation with a, then formulate these re-
lations as constraints in an optimization. In practice, both
contact and supporting relations are represented in terms of
contacting slots between two components (see Figure 10).
We also add constraints that require the placed-in node to
have similar scale with the node being replaced. If the con-
straining contact slots are less than three, we directly solve
for best translation, scaling, and possible rotation by looking
at the centers of contacts. If there are more than three contact
constraints, we solve linear equations for the best translation
and scaling as in [KCKK12].

Figure 11: The numbers of contact slots further classifies
the compatibility between components. The chair seat that
has four contact slots is not compatible with the cylindrical
bar shown on the left, which has only two contact slots.

Importantly, the contact slots do not only serve as con-
straints for the part placements, but also provide hints about
part compatibility. For example, the chair in Figure 11 has
four slots of contacts while the top bar of the gong model
has only two. Hence, the two parts are incompatible since
they have different number of contact slots. We define con-
tact slots as follows: for cylindrical parts, we define one con-
tact slot at its contacting end; for cuboid parts, we define two
slots at the contact edge (see Figures 3 and 10).

Once the first node is properly positioned, we add it to

Λ and repeat the process until all three nodes are added.
Symmetry is handled as soon as its opponent node is re-
placed by mapping the corresponding transformation. Fig-
ure 10 shows the process. Note that in some cases the best
transformation may cause the components to break their
structural properties such as deforming a circular chape to
an elliptical one. This can be solved using state-of-the-art
structure-preserving shape editing techniques [KSSCO08,
GSMCO09]. Note that when replacing a SFARR with an-
other SFARR, there are four possible combination of out-
comes, i.e., aba⊗cdc = {aba,ada,cbc,cdc}, leading to po-
tentially further variations.

7. Assessing Reshuffle Quality

The reshuffle framework uses geometric compatibility ϒ to
decide which compatible SFARR to first replace. This of-
fers a quality control for the reshuffle, i.e., we can use ϒ

to define a threshold for compatibility measurements. Fig-
ure 13 shows ϒ values to compare the upper SFARR-s of the
double-bed with SFARR-s in other models. While smaller ϒ

can indeed produce variations geometrically similar to the
input model, the medium/high ranges of ϒ lead to more non-
trivial and interesting models, which are particularly useful
for creative design. As default, for our tests, we set ϒ = 10.
While without a physical simulation we cannot guarantee
functional validity, we found a very large percentage of the
synthesized models are useful (see also user study).

8. Results and Discussion

We tested our framework with various families of shapes in-
cluding tables, chairs, cars, beds, sofas, lamps, lights, can-
dles, shelves, and street lights, etc. The main goal of our al-
gorithm is to demonstrate the effectiveness of the SFARR-s
in terms of structure and functionality preservation. Hence,
we focus more on cross-family shape reshuffling. Figures 12
and 14 show the main results. After the off-line stage, the on-
line reshuffle is fast. The complexity depends on the number
of permissible permutations while preserving SFARR com-
patibility. Generally it takes less than 2s to synthesize a
model including the component loading time on an Intel i7
2.7GHZ laptop with 4 GB memory.

In Figure 12, we mix among six objects including tables,
bus-stops, and a play horse to generate dozens of new mod-
els, a subset of which are shown. Many of the synthesized
shapes have rather different geometry than the original ones,
but still most of them retain the functionality, i.e., a bus-stop
remains a bus-stop, unless in some particular cases the re-
placed node has extra functionalities, which we did not ex-
plore. In such cases, surprising functionalities may appear in
the new shapes. For example, the table supports shown in the
green boxes come from the legs of the play horse. Besides
supporting the table, the new models can also be rocked.
On the other hand, such unexamined individual component
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Figure 12: Results demonstrate the support SFARR. Starting from six different shapes from different families, our framework
produces dozens of non-trivial variations, yet preserving functional plausibility. In green, we highlight some tables that were
ranked as interesting; in yellow, we highlight some tables that were ranked as functionally unsatisfactory; in red, we highlight
tables that are physically unstable.

functionality can lead to failures, as shown in yellow and
red boxes of Figure 12. In the object marked by the yellow
box, the table top is replaced by the top of a bus stop, which
does not allow the object to be used as a table. We believe
this can be solved by adding more physical constraining at-
tributes, such as horizontal top, placeable, rollable, etc., to
the framework by analyzing the shape geometry [UIM12].
We leave this for future work. Figure 14 shows further ex-
amples synthesized by our framework.

User interaction. Although our system automatically
groups the component parts, manual reassignment is some-
times required to semantically group parts. We support sim-
ple manual regrouping, e.g., to merge redundant components
across the bus stop in Figure 1. For models with simple struc-
ture like chairs, sofa, and lamps, no interaction was required.
For more complex models, interactions typically took total
of 1-2 minutes for 3-5 complex models. Table 1 lists time
required for individual models used in the paper. The cor-

Figure 13: Geometric compatibility of SFARR-s according
to ϒ: Larger values allow replacement of SFARR-s with sub-
stantially different geometry, while smaller values restrict
the replacements among geometrically similar ones.

rected groups ensure meaningful component grouping for
model parts and thus lead to plausible reshuffling. Since our
method works at the level of detected symmetry triplets, the
presence of non-meaningful components in SFARR-s may
lead to non-meaningful reshuffle results (e.g., parts of the
symmetry bars in the bus-stop being replaced with the entire
bed bars in Figure 1).

bus stops (Fig. 1, 12) beds (Fig. 1) tables (Fig. 3, 14)
< 40s < 20s < 10s

sofa (Fig 14) cars(Fig. 3, 14) cabinet (Fig. 14)
(no interaction) < 30s (no interaction)

Table 1: Average time for interactive regrouping required
for typical models.

User study. We conducted a user study to assess the results
of our framework (see project page for an application demo).
Specifically, we showed a small team of 15 people 35 mod-
els (evenly distributed among different sets and randomly
picked among our results pool), within which 5 were origi-
nal models. The users were asked to name the model among
provided original names (i.e., model families) from which
we generated our results. If the users did not agree with the
provided names based on object functionality, they had the
option of providing a new name, or mark the model as null,
i.e., non-functional.

The feedback was largely positive. All the 15 subjects
(all computer science students, some with computer graph-
ics background) consistently found most of the models to be
functional and agreed with the original names, e.g., a model
derived from a table was marked as table. The average hit
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Figure 14: Reshuffling results among various object families consistently indicate that the proposed SFARR-s can synthesize
non-trivial shape variations across classes, while maintaining plausible functionalities of the objects.
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rate was 85% (average 5 misses) when removing one high-
est (95%) and one lowest (77%). The failure cases are sim-
ilar, as shown in yellow boxes in Figures 12 and 14, where
original functionalities of individual parts were not replaced
(play horse, or bus stop), or additional functionalities intro-
duced that lead to ambiguities in judgement, e.g., sofa seats
placed on a counter or bed placed within a shelf (see Fig-
ure 14). Nevertheless, the user study demonstrated that the
variations mostly preserved the original designed function-
alities, while being rather different geometrically.

Limitations. The main limitations of the algorithm is the re-
liance on good quality pre-segmented method. Another im-
portant limitation is that we hand picked interesting SFARR

configurations in Section 3. In the future, we expect to auto-
matically extract interesting SFARR-s directly by analyzing
data collections. However, at this stage it remains a hypoth-
esis that such consistent SFARR-s exist in real model collec-
tions and can be automatically extracted.

9. Conclusions and Future Work

We presented a simple reshuffling framework for non-trivial
3D model creation across different shape families. We ex-
ploit a particular form of compatible shape substructure,
which we call symmetry functional arrangements (SFARR-
s) to match, replace, and position triplets of parts to create
plausible yet functional model variations. We demonstrated
that such simple forms of SFARR-s can produce a rich set
of novel shape variations, which are otherwise difficult to
achieve with existing methods. We also validated the func-
tional plausibility of the synthesized models via a user study.

We take a first step to relate shape functionalities to ge-
ometric substructures. In the future, we will like to fur-
ther search and explore other functional substructures, es-
pecially in conjunction with basic physical constraints. This
can lead to new model creation possibilities, especially to-
wards fabrication-aware form-finding.
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