#### **Smart Variations**

#### **Functional Substructures for Part Compatibility**





Youyi Zheng



Daniel Cohen-Or



Niloy J. Mitra



#### **How to Create 3D Models?**



#### **How to Create 3D Models?**





easy access to 3D models







[Gal et al. 2009]





[Gal et al. 2009]



[Bokeloh et al. 2010,2011]





[Gal et al. 2009]



[Bokeloh et al. 2010,2011]



[Yang et al. 2011]





[Gal et al. 2009]



[Bokeloh et al. 2010,2011]



[Jain et al. 2012]



[Yang et al. 2011]







[Funkhouser et al. 2004]





[Funkhouser et al. 2004]



[Kraevoy et al. 2007]

### **Learning Shape Variations**



### **Learning Shape Variations**





[Xu et al. 2012]

### **Learning Shape Variations**





[Xu et al. 2012]



[Kalogerakis et al. 2012]





[Funkhouser et al. 2004]





1. Which part(s) to replace?

[Funkhouser et al. 2004]





1. Which part(s) to replace?

2. What to replace with?

[Funkhouser et al. 2004]





[Funkhouser et al. 2004]

1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?





[Funkhouser et al. 2004]

1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?

geometric similarity





1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?

geometric similarity

restricted to the same object class



What are the parts and how are they connected?



What are the parts and how are they connected?





What are the parts and how are they connected?







**What** are the parts and **how** are they connected?





part-level 3D model — directed graph

## Our Approach





Niloy J. Mitra

### **Our Approach**









• Similar *substructures* share similar *functionality* 





- Similar *substructures* share similar *functionality*
- Mutual relations reveals shape structure





- Similar *substructures* share similar *functionality*
- Mutual relations reveals shape structure
  - Certain arrangements are more common than others





- Similar *substructures* share similar *functionality*
- Mutual relations reveals shape structure
  - Certain arrangements are more common than others









- Similar substructures share similar functionality
- Mutual relations reveals shape structure
  - Certain arrangements are more common than others







arrangement → triplet of parts

symmetry analysis + contact analysis







symmetry analysis + contact analysis





symmetry analysis + contact analysis

## Algorithm: Structure Analysis





symmetry analysis + contact analysis

## Algorithm: Structure Analysis



symmetry analysis + contact analysis

























































Niloy J. Mitra Smart Variations

embed

#### **Substructure Attributes**



#### **Substructure Attributes**







#### **Substructure Attributes**







co-axial

## Compatible sFarrs



## Compatible sFarrs









## Compatible sFarrs















Compatible **support** sFArrs

## **Group sFarr**



Niloy J. Mitra

## **Group sFarr**





#### sFarr Reshuffle





#### sFarr Reshuffle









#### sFarr Reshuffle









Niloy J. Mitra









$$\Upsilon(t_k, t_l) = \lambda \cdot \theta \cdot \vartheta$$



















• Set of parts, say,  $\{P_1, P_2, \dots\}$ 



• Set of parts, say,  $\{P_1, P_2, \dots\}$ 

• Each part encoded by parameters:  $\mathbf{x}_i$ 



• Set of parts, say,  $\{P_1, P_2, \dots\}$ 

- Each part encoded by parameters:  $\mathbf{x}_i$
- Contact constraint:  $c_{ij}(\mathbf{x}_i) = c_{ij}(\mathbf{x}_j)$



• Set of parts, say,  $\{P_1, P_2, \dots\}$ 

- Each part encoded by parameters:  $\mathbf{x}_i$
- Contact constraint:  $c_{ij}(\mathbf{x}_i) = c_{ij}(\mathbf{x}_j)$
- Symmetry constraint:  $P_i = T(P_j)$



- Set of parts, say,  $\{P_1, P_2, \dots\}$
- Each part encoded by parameters:  $\mathbf{x}_i$
- Contact constraint:  $c_{ij}(\mathbf{x}_i) = c_{ij}(\mathbf{x}_j)$
- Symmetry constraint:  $P_i = T(P_j)$

$$\min_{\mathbf{X}} E(\{\mathbf{x}_1, \mathbf{x}_2, \dots\}) \text{ s.t. } g_j(\mathbf{X}) = 0$$





Niloy J. Mitra









Niloy J. Mitra





Niloy J. Mitra

























Niloy J. Mitra

























#### Demo





















Niloy J. Mitra









Niloy J. Mitra





Assume access to part-level segmented models



Assume access to part-level segmented models

3 sFarr substructures are manually selected

Niloy J. Mitra



Assume access to part-level segmented models

3 sFarr substructures are manually selected

user control?

Niloy J. Mitra



Assume access to part-level segmented models

3 sFarr substructures are manually selected

user control?

computational complexity





Using relation graphs for compositional modeling



Using relation graphs for compositional modeling

 Stronger motivation to continue focusing on unsupervised analysis of model repositories



Using relation graphs for compositional modeling

 Stronger motivation to continue focusing on unsupervised analysis of model repositories

Relate it to actual physics simulation



Using relation graphs for compositional modeling

 Stronger motivation to continue focusing on unsupervised analysis of model repositories

Relate it to actual physics simulation

http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/sFarr/sFarr\_eg13.html