
Smart	
 Varia)ons	

Func)onal	
 Substructures	
 for	
 Part	
 Compa)bility

Youyi	
 Zheng Daniel	
 Cohen-­‐Or Niloy	
 J.	
 Mitra

EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Functional Substructures for Part Compatibility

Youyi Zheng Daniel Cohen-Or Niloy J. Mitra

KAUST TAU University College London

Abstract

As collections of 3D models continue to grow, reusing model parts allows generation of novel model variations.
Naïvely swapping parts across models, however, leads to implausible results, especially when mixing parts across
different model families. Hence, the user has to manually ensure that the final model remains functionally valid.
We claim that certain symmetric functional arrangements (SFARR-s), which are special arrangements among
symmetrically related substructures, bear close relation to object functions. Hence, we propose a purely geometric
approach based on such substructures to match, replace, and position triplets of parts to create non-trivial, yet
functionally plausible, model variations. We demonstrate that starting even from a small set of models such a
simple geometric approach can produce a diverse set of non-trivial and plausible model variations.

1. Introduction

Geometric design remains challenging. For most users, 3D
modeling from scratch is tedious, cumbersome, difficult, and
often not a realistic option. Alternatively, new models can
be created by reusing existing parts. The key challenge is
to create novel, non-trivial, and interesting variations, while
still maintaining functional plausibility.

Model collections have grown in popularity with the avail-
ability of online 3D model repositories (e.g., Google Ware-
house, Turbosquid, etc.), especially for man-made objects.
Various automatic and semi-automatic approaches have been
proposed to organize and consistently segment models of
such collections, leading to interesting reuse possibilities
(e.g., [ARSF09, WAvK⇤12]). Naïve methods to interchange
model parts can easily fail: random swapping of parts
quickly destroys model plausibility, or even text label-based
part replacement can lead to inconsistency, e.g., a ‘mug han-
dle’ is different from the ‘handle’ of a racket. Hence, re-
searchers have proposed a mix-and-match by swapping parts
based on geometric similarity only [FKS⇤04], or considering
both geometric similarity and contact information for part
replacements [KJS07]. The task of content creation, how-
ever, remains difficult since the user has to carefully control
the final shape to ensure its plausibility.

In another approach, probabilistic models are learned
from training datasets to encode part-based composi-
tion [CKGK11, KCKK12]. Subsequently, model synthesis
amounts to sampling from such probabilistic models. These

Figure 1: Starting from only three models (top), our al-
gorithm detects and exploits symmetric functional arrange-
ments (SFARR-s) to generate more than 20 variations. Many
of the variations have strong geometric differences, but still
preserve the object sub-structures and functionalities.

c� 2013 The Author(s)
Computer Graphics Forum c� 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Smart VariationsNiloy J. Mitra

How	
 to	
 Create	
 3D	
 Models?

Smart VariationsNiloy J. Mitra

How	
 to	
 Create	
 3D	
 Models?

easy	
 access	
 to	
 3D	
 models

Smart VariationsNiloy J. Mitra

Crea)ng	
 Shape	
 Varia)ons

Smart VariationsNiloy J. Mitra

Crea)ng	
 Shape	
 Varia)ons

[Gal	
 et	
 al.	
 2009]

Smart VariationsNiloy J. Mitra

Crea)ng	
 Shape	
 Varia)ons

[Bokeloh	
 et	
 al.	
 2010,2011]

[Gal	
 et	
 al.	
 2009]

Smart VariationsNiloy J. Mitra

Crea)ng	
 Shape	
 Varia)ons

[Bokeloh	
 et	
 al.	
 2010,2011]

[Gal	
 et	
 al.	
 2009]

[Yang	
 et	
 al.	
 2011]

Smart VariationsNiloy J. Mitra

Crea)ng	
 Shape	
 Varia)ons

[Bokeloh	
 et	
 al.	
 2010,2011]

[Gal	
 et	
 al.	
 2009]

[Yang	
 et	
 al.	
 2011]

[Jain	
 et	
 al.	
 2012]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

Smart VariationsNiloy J. Mitra

Composi)onal	
 ModelingModeling by Example

Thomas Funkhouser,1 Michael Kazhdan,1 Philip Shilane,1 Patrick Min,2
William Kiefer,1 Ayellet Tal,3 Szymon Rusinkiewicz,1 and David Dobkin1

1Princeton University 2Utrecht University 3Technion - Israel Institute of Technology

Abstract

In this paper, we investigate a data-driven synthesis approach to
constructing 3D geometric surface models. We provide methods
with which a user can search a large database of 3D meshes to find
parts of interest, cut the desired parts out of the meshes with intel-
ligent scissoring, and composite them together in different ways to
form new objects. The main benefit of this approach is that it is both
easy to learn and able to produce highly detailed geometric models
– the conceptual design for new models comes from the user, while
the geometric details come from examples in the database. The
focus of the paper is on the main research issues motivated by the
proposed approach: (1) interactive segmentation of 3D surfaces, (2)
shape-based search to find 3D models with parts matching a query,
and (3) composition of parts to form new models. We provide new
research contributions on all three topics and incorporate them into
a prototype modeling system. Experience with our prototype sys-
tem indicates that it allows untrained users to create interesting and
detailed 3D models.
Keywords: databases of geometric models, 3D shape matching,
interactive modeling tools

1 Introduction

One of the most significant obstacles in computer graphics is pro-
viding easy-to-use tools for creating detailed 3D models. Most
commercial modeling systems are difficult to learn, and thus their
use has been limited to a small set of trained experts. Conversely,
3D sketching programs are good for novices, but practical for cre-
ating only simple shapes. Our goal is to provide a tool with which
almost anybody can create detailed geometric models quickly and
easily.
In this paper, we investigate “modeling by example,” a data-

driven approach to constructing new 3D models by assembling
parts from previously existing ones. We have built an interac-
tive tool that allows a user to find and extract parts from a large
database of 3D models and composite them together to create new
3D models. This approach is useful for creating objects with inter-
changeable parts, which includes most man-made objects (vehi-
cles, machines, furniture, etc.) and several types of natural objects
(faces, fictional animals). Our current implementation employs a
database of more than 10,000 models, including multiple examples
of almost every type of household object.
The main motivation for this approach is that it allows untrained

users to create detailed geometric models quickly. Unlike previous
interactive modeling systems, our users must only search, select,
and combine existing parts from examples in the database – i.e.,

Figure 1: Modeling by example: geometric parts extracted from a
database of 3D models can be used to create new objects. The large
brown chair was built from the circled parts of the others.

they rarely have to create new geometry from scratch. As a result,
the user interface can be simpler and accessible to a wider range
of people. For example, when making the rocking chair shown in
Figure 1, the user started with a simple chair (top-left), and then
simply replaced parts. The commands were very simple, but the
result has all the geometric details created by the expert modelers
who populated the database. This approach provides a new way
to make 3D models for students, designers of virtual worlds, and
participants in on-line 3D games.
In the following sections, we address the main research issues in

building such a system: segmenting 3D surfaces into parts, search-
ing a database of 3D models for parts, and compositing parts from
different models. Specifically, we make the following research
contributions: (1) an intelligent scissors algorithm for cutting 3D
meshes, (2) a part-in-whole shape matching algorithm, (3) a method
for aligning 3D surfaces optimally, and (4) a prototype system for
data-driven synthesis of 3D models. Experience with our prototype
system indicates that it is both easy to learn and useful for creating
interesting 3D models.

2 Related Work

This paper builds upon related work in several sub-fields of com-
puter graphics, geometric modeling, and computer vision.
Geometric modeling: Our system is a 3D modeling tool. How-
ever, its purpose is quite different than most previous modeling sys-
tems (e.g., [Wavefront 2003]). It is intended for rapidly combining

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 ModelingModeling by Example

Thomas Funkhouser,1 Michael Kazhdan,1 Philip Shilane,1 Patrick Min,2
William Kiefer,1 Ayellet Tal,3 Szymon Rusinkiewicz,1 and David Dobkin1

1Princeton University 2Utrecht University 3Technion - Israel Institute of Technology

Abstract

In this paper, we investigate a data-driven synthesis approach to
constructing 3D geometric surface models. We provide methods
with which a user can search a large database of 3D meshes to find
parts of interest, cut the desired parts out of the meshes with intel-
ligent scissoring, and composite them together in different ways to
form new objects. The main benefit of this approach is that it is both
easy to learn and able to produce highly detailed geometric models
– the conceptual design for new models comes from the user, while
the geometric details come from examples in the database. The
focus of the paper is on the main research issues motivated by the
proposed approach: (1) interactive segmentation of 3D surfaces, (2)
shape-based search to find 3D models with parts matching a query,
and (3) composition of parts to form new models. We provide new
research contributions on all three topics and incorporate them into
a prototype modeling system. Experience with our prototype sys-
tem indicates that it allows untrained users to create interesting and
detailed 3D models.
Keywords: databases of geometric models, 3D shape matching,
interactive modeling tools

1 Introduction

One of the most significant obstacles in computer graphics is pro-
viding easy-to-use tools for creating detailed 3D models. Most
commercial modeling systems are difficult to learn, and thus their
use has been limited to a small set of trained experts. Conversely,
3D sketching programs are good for novices, but practical for cre-
ating only simple shapes. Our goal is to provide a tool with which
almost anybody can create detailed geometric models quickly and
easily.
In this paper, we investigate “modeling by example,” a data-

driven approach to constructing new 3D models by assembling
parts from previously existing ones. We have built an interac-
tive tool that allows a user to find and extract parts from a large
database of 3D models and composite them together to create new
3D models. This approach is useful for creating objects with inter-
changeable parts, which includes most man-made objects (vehi-
cles, machines, furniture, etc.) and several types of natural objects
(faces, fictional animals). Our current implementation employs a
database of more than 10,000 models, including multiple examples
of almost every type of household object.
The main motivation for this approach is that it allows untrained

users to create detailed geometric models quickly. Unlike previous
interactive modeling systems, our users must only search, select,
and combine existing parts from examples in the database – i.e.,

Figure 1: Modeling by example: geometric parts extracted from a
database of 3D models can be used to create new objects. The large
brown chair was built from the circled parts of the others.

they rarely have to create new geometry from scratch. As a result,
the user interface can be simpler and accessible to a wider range
of people. For example, when making the rocking chair shown in
Figure 1, the user started with a simple chair (top-left), and then
simply replaced parts. The commands were very simple, but the
result has all the geometric details created by the expert modelers
who populated the database. This approach provides a new way
to make 3D models for students, designers of virtual worlds, and
participants in on-line 3D games.
In the following sections, we address the main research issues in

building such a system: segmenting 3D surfaces into parts, search-
ing a database of 3D models for parts, and compositing parts from
different models. Specifically, we make the following research
contributions: (1) an intelligent scissors algorithm for cutting 3D
meshes, (2) a part-in-whole shape matching algorithm, (3) a method
for aligning 3D surfaces optimally, and (4) a prototype system for
data-driven synthesis of 3D models. Experience with our prototype
system indicates that it is both easy to learn and useful for creating
interesting 3D models.

2 Related Work

This paper builds upon related work in several sub-fields of com-
puter graphics, geometric modeling, and computer vision.
Geometric modeling: Our system is a 3D modeling tool. How-
ever, its purpose is quite different than most previous modeling sys-
tems (e.g., [Wavefront 2003]). It is intended for rapidly combining

[Funkhouser	
 et	
 al.	
 2004] [Kraevoy	
 et	
 al.	
 2007]

Smart VariationsNiloy J. Mitra

Learning	
 Shape	
 Varia)ons

Smart VariationsNiloy J. Mitra

Learning	
 Shape	
 Varia)ons

[Xu	
 et	
 al.	
 2012]

Smart VariationsNiloy J. Mitra

Learning	
 Shape	
 Varia)ons

[Xu	
 et	
 al.	
 2012] [Kalogerakis	
 et	
 al.	
 2012]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

1. Which part(s) to replace?

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

1. Which part(s) to replace?

2. What to replace with?

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

geometric similarity

[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

Composi)onal	
 Modeling

1. Which part(s) to replace?

2. What to replace with?

3. How to connect the parts?

existing geometry into new models, and not for creating new ge-
ometry from scratch. As such, it has a synergistic relationship with
other modeling systems: our tool will benefit from improvements
to existing modeling systems, since there will then be larger/better
databases of 3D geometry, while other modeling systems will likely
benefit from including the methods described in this paper to pro-
vide better utilization of existing models.

Sketch modeling tools: Our system shares many ideas with 3D
sketching systems, such as Sketch [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. Like these systems, we follow the gen-
eral philosophy of keeping the user interface simple by inferring the
intention of a few, easy-to-learn commands, rather than providing
an exhaustive set of commands and asking the user to set several
parameters for each one. However, previous systems have achieved
their simplicity by limiting the complexity and types of shapes that
can be created by the user. We achieve our simplicity by leveraging
existing geometry stored in a database.

Data-driven synthesis: Our work is largely inspired by the recent
trend towards data-driven synthesis in computer graphics. The gen-
eral strategy is to acquire lots of data, chop it up into parts, deter-
mine which parts match, and then stitch them together in new and
interesting ways [Cohen 2000]. This approach has been demon-
strated recently for a number of data types, including motion cap-
ture data (e.g., [Lee et al. 2002]). However, to our knowledge, it has
never been applied to 3D surface modeling. Perhaps this is because
3D surfaces are more difficult to work with than other data types:
they are harder to “chop up” into meaningful parts; they have more
degrees of freedom affecting how they can be positioned relative
to one another; they have no obvious metric for identifying similar
parts in the database; and, they are harder to stitch together. These
are the issues addressed in this paper.

Shape interpolation: Our work shares many ideas with “shape
by example” [Sloan et al. 2001] and other blending systems
whose goal is to create new geometric forms from existing ones
(e.g., [Lazarus and Verroust 1998]). However, our approach is quite
different: we focus on recombining parts of shapes rather than mor-
phing between them. We take a combinatorial approach rather than
an interpolative one. Accordingly, the types of shapes that we can
create and the research issues we must address are quite different.
We believe that our approach is better suited for creating shapes
composed of many parts, each of which has a discrete set of possi-
ble forms (e.g., cars, tables, computers, etc.), while interpolation is
better for generating new shapes resulting from deformations (e.g.,
articulated motions).

Geometric search engines: Our system includes the ability to
search a large database of 3Dmodels for matches based on keyword
and/or shape similarity. In this respect, it is related to 3D search
engines that have recently been deployed on the Web (e.g., [Chen
et al. 2003; Corney et al. 2002; Funkhouser et al. 2003; Paquet and
Rioux 1997; Suzuki 2001; Vranic 2003]). Several such systems
have acquired impressive databases and allow users to download
3D models for free. In our current implementation, we use the data
of the Princeton 3D Model Search Engine [Min et al. 2003]. That
system and ones like it employ text-based search methods similar
to ours. However, their shape-based matching algorithms consider
only whole-object shape matching. In this paper, we address the
harder problem of part-in-whole shape matching.

To our knowledge, this is the first time that a large database of
example 3D models and shape-based retrieval methods have been
integrated into an interactive modeling tool.

3 System Overview

The input to our system is a database of 3D models, and the output
is a new 3D model created interactively by a user. The usual cycle
of operation involves choosing a model from the database, selecting
a part of the model to edit, executing a search of the database for
similar parts, selecting one of the models returned by the search,
and then performing editing operations in which parts are cut out
from the retrieved model and composited into the current model.
This cycle is repeated until the user is satisfied with the resulting
model and saves it to a file. The motivation for this work cycle is
that it requires the user to learn very few commands (open, save,
select, cut, copy, paste, undo, search, etc.), all of which are familiar
to almost every computer user.
A short session with our system is shown in Figure 2. Imagine

that a school child wants to investigate what the Venus de Milo
sculpture looked like before her arms were broken off. Although
there are several theories, some believe that she was holding an
apple aloft in her left hand, and her right arm was posed across her
midsection [Curtis 2003]. Of course, it would be very difficult for
a child to construct plausible 3D models for two arms and an apple
from scratch. So, we investigate extracting those parts from other
3D models available in our database.

Figure 2: Screenshots of a ten-minute session demonstrating the
main features of our system being used to investigate what Venus
looked like before she lost her arms.

geometric similarity

restricted to the same object class[Funkhouser	
 et	
 al.	
 2004]

Smart VariationsNiloy J. Mitra

What	
 are	
 the	
 parts	
 and	
 how	
 are	
 they	
 connected?

Beyond	
 Geometric	
 Similarity

Smart VariationsNiloy J. Mitra

What	
 are	
 the	
 parts	
 and	
 how	
 are	
 they	
 connected?

Beyond	
 Geometric	
 Similarity

Smart VariationsNiloy J. Mitra

What	
 are	
 the	
 parts	
 and	
 how	
 are	
 they	
 connected?

Beyond	
 Geometric	
 Similarity

Smart VariationsNiloy J. Mitra

What	
 are	
 the	
 parts	
 and	
 how	
 are	
 they	
 connected?

Beyond	
 Geometric	
 Similarity

part-­‐level	
 3D	
 model	
 	
 	
 	
 	
 	
 	
 	
 	
 directed	
 graph

Smart VariationsNiloy J. Mitra

Our	
 Approach

Smart VariationsNiloy J. Mitra

Our	
 Approach

Smart VariationsNiloy J. Mitra

Hypothesis

Smart VariationsNiloy J. Mitra

Hypothesis
• Similar	
 substructures	
 share	
 similar	
 func/onality

Smart VariationsNiloy J. Mitra

Hypothesis
• Similar	
 substructures	
 share	
 similar	
 func/onality

• Mutual	
 relaQons	
 reveals	
 shape	
 structure

Smart VariationsNiloy J. Mitra

Hypothesis
• Similar	
 substructures	
 share	
 similar	
 func/onality

• Mutual	
 relaQons	
 reveals	
 shape	
 structure

– Certain	
 arrangements	
 are	
 more	
 common	
 than	
 others

Smart VariationsNiloy J. Mitra

Hypothesis
• Similar	
 substructures	
 share	
 similar	
 func/onality

• Mutual	
 relaQons	
 reveals	
 shape	
 structure

– Certain	
 arrangements	
 are	
 more	
 common	
 than	
 others

Smart VariationsNiloy J. Mitra

Hypothesis
• Similar	
 substructures	
 share	
 similar	
 func/onality

• Mutual	
 relaQons	
 reveals	
 shape	
 structure

– Certain	
 arrangements	
 are	
 more	
 common	
 than	
 others

arrangement	
 	
 	
 	
 	
 	
 	
 	
 	
 triplet	
 of	
 parts

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

symmetry analysis + contact analysis

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

symmetry analysis + contact analysis

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

symmetry analysis + contact analysis

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

symmetry analysis + contact analysis

Smart VariationsNiloy J. Mitra

Algorithm:	
 Structure	
 Analysis

…

symmetry analysis + contact analysis

Smart VariationsNiloy J. Mitra

Func)onal	
 Substructures	
 (sFarr)

Smart VariationsNiloy J. Mitra

Func)onal	
 Substructures	
 (sFarr)

Smart VariationsNiloy J. Mitra

Func)onal	
 Substructures	
 (sFarr)

Smart VariationsNiloy J. Mitra

Func)onal	
 Substructures	
 (sFarr)

Smart VariationsNiloy J. Mitra

Func)onal	
 Substructures	
 (sFarr)

Smart VariationsNiloy J. Mitra

Types	
 of	
 sFarrs

Smart VariationsNiloy J. Mitra

Types	
 of	
 sFarrs

support

Smart VariationsNiloy J. Mitra

Types	
 of	
 sFarrs

support

embed

Smart VariationsNiloy J. Mitra

Types	
 of	
 sFarrs

support

embed
placement

Smart VariationsNiloy J. Mitra

Substructure	
 AJributes

Smart VariationsNiloy J. Mitra

Substructure	
 AJributes

stability

Smart VariationsNiloy J. Mitra

Substructure	
 AJributes

co-­‐axialstability

Smart VariationsNiloy J. Mitra

Compa/ble	
 sFarrs

Smart VariationsNiloy J. Mitra

Compa/ble	
 sFarrs

Compa&ble	
 embed	
 sFArrs

Smart VariationsNiloy J. Mitra

Compa/ble	
 sFarrs

Compa&ble	
 embed	
 sFArrs

Compa&ble	
 support	
 sFArrs

Smart VariationsNiloy J. Mitra

Group	
 sFarr

Smart VariationsNiloy J. Mitra

Group	
 sFarr
Zheng, Cohen-Or, Mitra / Functional Substructures for Part Compatibility

Figure 7: Different combinations of SFARR-s form clusters.
We define new functional attributes for elements in a SFARR
once it is shared by another.

Figure 9, the four table legs both support the table top and
being supported by the bottom slot, i.e., there are both sup-
port SFARR-s and placements SFARR-s. In this case, the legs
which are placement SFARR-s also act as support, hence
we probably would not wish to replace them with another
placement SFARR that cannot act as support, for example
like the candles shown in Figure 3. Thus, we add new func-
tional attributes to individual nodes in SFARR once they are
shared by multiple SFARR-s, i.e., when groups of SFARR-s
are found.

Let us denote the three types of SFARR-s as S (support),
E (embed), and P (placement), respectively. The operator
⌦ denotes that two triplets have common elements, i.e.,
X ⌦Y) Z means two SFARR-s with types of X and Y share
common node(s), and their common node(s) will be associ-
ated with attribute Z (the nodes in each SFARR are originally
assigned with the corresponding attributes). Now we define
the following rules (? means no attribute to be added):

P⌦P)? S⌦S)? E ⌦E)?
P⌦S) P+S E ⌦S) E +S P⌦E)?

Figure 7 shows six basic combinations. Note that if both the
symmetric components in a SFARR touch the ground, we
also add the S attribute to the two elements. Let the set of at-
tributes for nodes ni and n j be Di and D j, respectively. Once
we add such functional attributes to the SFARR elements, we
define a SFARR node ni as replaceable by n j iff both of the
following holds:

• Di ✓ D j or (Di \D j)\{S,P}=?
• ni and n j have the same number of contact slots (see Sec-

tion 6.4).

Note that we define a preference across the three types: S =
P � E because the embed attribute has lower priority than
the other two attributes in relative occurrence in typical man-
made objects (see also Section 6.4 for contact compatibility).

When SFARR-s form shared elements, multiple SFARR-s

Figure 8: Groups of SFARR-s can form new SFARR-s, and
offers new possibilities for compatibility. The two pairs of
symmetry legs of the chair shares a common seat, grouping
the symmetries can lead to one single SFARR which is com-
patible to the foot rest of the counter.

of the same type can further form new SFARR-s. Figure 8
shows such an example, where the original SFARR-s formed
by the four chair legs are not compatible to the foot rest of
the counter, but grouping them forms new compatible sup-
port SFARR-s. In our algorithm, we identify all such possible
groups of SFARR-s and add them in part reshuffling, which
greatly increases the variations in the output.

Figure 9: Multiple SFARR-s can share common elements
leading to new functionalities of the shared elements.

6.3. Replace SFARR

Next, we search for SFARR replacements. Given a set of
graphs W and a graph Gi 2 W, we first find all the SFARR-s
in Gi and their compatible SFARR-s in all the rest of G j 2 W
forming a set say Xi. We then search for all possible SFARR
clusters in Gi and sort them by their sizes. Assume the list of
sorted SFARR clusters is {L1,L2, ...,Lk}. Within each SFARR
cluster L j, we use a greedy algorithm to sort the SFARR-s by
their compatibility to the SFARR-s in Xi. For any two com-
patible SFARR-s tk 2 Gi and tl 2 G j, we measure their geom-
etry compatibility °(tk, tl) based on how the parts got rela-
tively scaled, how the relative arrangement of the part triplets
changed in terms of subtended angles and mutual distances.
Specifically,

°(tk, tl) = l ·q ·J, (2)

where l = P2
i=0Pt=x,y,zg(sk

t ,sl
t) is the scale compatibility

between the corresponding nodes in tk and tl with g(x,y) =

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.

Smart VariationsNiloy J. Mitra

sFarr	
 Reshuffle

Smart VariationsNiloy J. Mitra

sFarr	
 Reshuffle

Smart VariationsNiloy J. Mitra

sFarr	
 Reshuffle

Smart VariationsNiloy J. Mitra

sFarr	
 Compa)bility

Smart VariationsNiloy J. Mitra

sFarr	
 Compa)bility

⌥(tk, tl) = � · ✓ · #

Smart VariationsNiloy J. Mitra

sFarr	
 Compa)bility

⌥(tk, tl) = � · ✓ · #

scale angle distortion

Smart VariationsNiloy J. Mitra

sFarr	
 Compa)bility

⌥(tk, tl) = � · ✓ · #

scale angle distortion

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

• Set of parts, say, {P1, P2, . . . }

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

• Set of parts, say,

• Each part encoded by parameters:

{P1, P2, . . . }

xi

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

• Set of parts, say,

• Each part encoded by parameters:

• Contact constraint:

{P1, P2, . . . }

xi

cij(xi) = cij(xj)

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

• Set of parts, say,

• Each part encoded by parameters:

• Contact constraint:

• Symmetry constraint:

{P1, P2, . . . }

xi

cij(xi) = cij(xj)

Pi = T (Pj)

Smart VariationsNiloy J. Mitra

How	
 to	
 Place	
 the	
 Parts?

• Set of parts, say,

• Each part encoded by parameters:

• Contact constraint:

• Symmetry constraint:

{P1, P2, . . . }

xi

cij(xi) = cij(xj)

Pi = T (Pj)

min
X

E({x1,x2, . . . }) s.t. gj(X) = 0

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Placement	
 Op)miza)on

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Demo

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Results

Smart VariationsNiloy J. Mitra

Limita)ons

Smart VariationsNiloy J. Mitra

Limita)ons

• Assume access to part-level segmented models

Smart VariationsNiloy J. Mitra

Limita)ons

• Assume access to part-level segmented models

• 3 sFarr substructures are manually selected

Smart VariationsNiloy J. Mitra

Limita)ons

• Assume access to part-level segmented models

• 3 sFarr substructures are manually selected

• user control?

Smart VariationsNiloy J. Mitra

Limita)ons

• Assume access to part-level segmented models

• 3 sFarr substructures are manually selected

• user control?

• computational complexity

Smart VariationsNiloy J. Mitra

Summary	
 and	
 Future	
 Work

Smart VariationsNiloy J. Mitra

Summary	
 and	
 Future	
 Work

• Using relation graphs for compositional modeling

Smart VariationsNiloy J. Mitra

Summary	
 and	
 Future	
 Work

• Using relation graphs for compositional modeling

• Stronger motivation to continue focusing on
unsupervised analysis of model repositories

Smart VariationsNiloy J. Mitra

Summary	
 and	
 Future	
 Work

• Using relation graphs for compositional modeling

• Stronger motivation to continue focusing on
unsupervised analysis of model repositories

• Relate it to actual physics simulation

Smart VariationsNiloy J. Mitra

Summary	
 and	
 Future	
 Work

• Using relation graphs for compositional modeling

• Stronger motivation to continue focusing on
unsupervised analysis of model repositories

• Relate it to actual physics simulation

http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/sFarr/sFarr_eg13.html

http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/sFarr/sFarr_eg13.html
http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/sFarr/sFarr_eg13.html

