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Repeated structures are ubiquitous in urban facades. Such repetitions
lead to ambiguity in establishing correspondences across sets of unordered
images. A decoupled structure-from-motion reconstruction followed by
symmetry detection often produces errors: outputs are either noisy and in-
complete, or even worse, appear to be valid but actually have a wrong num-
ber of repeated elements. We present an optimization framework for ex-
tracting repeated elements in images of urban facades, while simultaneously
calibrating the input images and recovering the 3D scene geometry using a
graph-based global analysis. We evaluate the robustness of the proposed
scheme on a range of challenging examples containing widespread repeti-
tions and non-distinctive features. These image sets are common but cannot
be handled well with state-of-the-art methods. We show that the recovered
symmetry information along with the 3D geometry enables a range of novel
image editing operations that maintain consistency across the images.
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1. INTRODUCTION

Acquiring 3D geometry of urban spaces is central to many appli-
cations for digital cities, including mapping and navigation, urban
design, and content creation for entertainment. Such applications
heavily depend on accurate 3D models of building facades since
many tasks require interaction with street-level buildings, e.g., in
Google Street View or Microsoft Visual Earth. While different 3D
acquisition possibilities exist, image-based modeling remains the
most popular one due to the simplicity of image acquisition and
the growing ubiquity of handheld cameras (see [Quan and Kanade
2010] for a detailed history of image-based modeling).

Any such image-based modeling method relies heavily on ac-
curate calibration of the scene, i.e., the location, orientation, and
field of view of the camera corresponding to each image, to de-
termine the 3D scene geometry by triangulating the calibrated im-
ages [Snavely et al. 2006]. The core challenge is to establish corre-
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Fig. 1: Repetitions in urban facades result in ambiguous correspondences
across image pairs that cause traditional structure-from-motion (SfM) to
fail: Either reconstruction quality is poor, or the reconstruction looks appar-
ently plausible but actually has the wrong number of elements. In contrast,
our coupled regularity detection and image calibration framework recovers
accurate 3D facade geometry along with the repetition structure.
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Fig. 2: Starting from a set of 26 unordered images of a facade (left), we propose a global optimization framework that simultaneously recovers
3D scene information, extracts 2-parameter repetition patterns, and calibrates the input images (middle). The user marks one repeated element
in one of the images (left). The 3D geometry along with the repetition information can then be used for novel image manipulations, e.g.,
changing the repetition patterns (right), or removing unwanted image elements, consistently across all the input images.

spondence, i.e., identify points across images that relate to the same
3D position in the physical world, while factoring out image space
variations due to occlusion, reflection, zoom level, etc. The problem
becomes particularly difficult in the presence of repeated elements
that give rise to multiple and ambiguous correspondences as in the
case of urban facades, where symmetry often forms an organizing
principle due to aesthetic considerations, manufacturing efficiency,
and economic implications. Unfortunately, such widespread repe-
titions make stable correspondence estimation difficult, potentially
leading to poor reconstruction results.

Traditional image-based methods that do not explicitly take sym-
metries into account often contain one of the following artifacts:
(i) large-scale ambiguities due to content repetition cause standard
structure-from-motion (SfM) to produce poor and noisy 3D output,
or (ii) SfM produces apparently reasonable 3D output, but with
an incorrect number of repeated elements (see Figure 1). Even if
the calibration is seemingly successful, the results can be subop-
timal, producing sparse, incomplete 3D reconstructions that often
accumulate error leading to drifts (e.g., straight facades appearing
curved) (see Figure 13).

We propose an image-based 3D reconstruction and editing
framework that avoids these difficulties by injecting symmetry in-
formation early into the reconstruction process. Our algorithm de-
tects regularities and establishes correspondence simultaneously,
thereby addressing the cyclic dependency of the problem of 3D re-
construction with repeating structures: stable 3D symmetry detec-
tion requires accurate camera calibration to obtain correct 3D point
samples, while accurate camera calibration requires stable symme-
try detection to resolve ambiguities.

‘We bootstrap the algorithm by first detecting regularities explic-
itly in the 2D images and then use the symmetry information to
guide the correspondence search. We perform regularity detection
based on a user-marked template in a single image (the only user
assistance in our algorithm). We incorporate geometric relations
across the detected repeating structures as constraints in a novel
graph-based optimization. This optimization simultaneously dis-
ambiguates correspondences while estimating camera poses and
refining the symmetry relations. As output, we obtain a globally
consistent 3D geometry reconstruction with explicit encoding of

the facade regularities. In Figure 2, we show a typical reconstruc-
tion result, along with the recovered symmetry grid. For this exam-
ple, state-of-the-art SfM approaches or even a method that tries to
detect ambiguous relations [Zach et al. 2010] fail to produce any
reasonable output (see supplementary material for details).

In this paper we focus on repetitions arranged as planar
grids. These are the dominant type of regularities in building fa-
cades [Pauly et al. 2008]. This restriction significantly reduces the
search space of geometric relations across images since any trans-
formation induced by correspondences between images should
overlap the boundaries of the repeating elements. Consistently or-
dering all the images by considering only their pairwise-relations
is, however, unlikely to be successful. Instead, we consider collec-
tions of pairwise relations and present a global optimization scheme
to resolve ambiguities. We further optimize the solution by refining
the initial vanishing line estimates and perform another pass of con-
strained bundle adjustment to finalize the camera parameters and
the extracted 3D grid parameters.

We evaluate the accuracy and robustness of our framework on
a large number of challenging datasets with single and multiple
facades, where traditional SfM approaches either fail or perform
poorly. In addition to accurate reconstruction, our algorithm also
extracts regularity information and effectively couples the 2D input
images with the reconstructed 3D output. We use this information
to enable coupled image manipulations that are otherwise difficult
to achieve.

Contributions. Our key contribution is to couple camera calibra-
tion with symmetry detection in the context of urban facade recon-
struction. Such a coupling has the following advantages:

First, explicit detection of the repeating structures reduces the
search space of possible geometric relations between image pairs
and globally disambiguates the correspondence search. Second, ex-
posing explicit constraints about the geometric relations between
the repeating structures significantly increases the reconstruction
accuracy. Finally, the computed 3D scene geometry along with the
extracted regularity links the input images and the reconstructed
3D scene, which in turn enables several interactive editing applica-
tions.
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2. RELATED WORK

Structure-from-Motion (SfM). A multitude of SfM algorithms
has been developed in recent years to compute camera parameters
and sparse 3D scene geometry from image sequences. Typically,
such algorithms work in two key stages. In the first stage, over-
lapping images are identified and correspondences across different
views are established. In the second stage, the extracted correspon-
dences are used to geometrically relate the views and estimate both
the camera parameters and the 3D structure.

An important category of StM algorithms operate on ordered im-
age sequences such as video [Gil et al. 2006; Pollefeys et al. 2008].
The known order of the images provides strong cues to determine
candidate images that should be matched.

In another approach, the growing availability of large numbers
of images of particular places from the Internet has inspired re-
searchers to develop SfM methods for unorganized image sets (see
[Snavely 2011] and references therein). However, without any as-
sumption on the order of the images, matching images and es-
tablishing their global relations is challenging, especially in the
presence of visually similar and repeating structures. Several ap-
proaches have been proposed: Govindu [2004] uses the redun-
dancy in the pairwise image relations to average multiple obser-
vations to produce a globally consistent motion estimation, and
later [Govindu 2006] randomly samples spanning trees from a
graph encoding image relations to prune out mismatches; Martinec
and Pajdla [2007] incrementally remove high-residual matches to
increase robustness; Zach et al. [2008] use features that are matched
between two images but not detected in a third view to detect false
matches; while Klopschitz et al. [2010] propose an incremental
framework that favors subsets of images with the highest local con-
nectivity. Micusik et al. [2008] use rectangular structures in two-
view matching as an alternative to ambiguous feature points. Such
local methods, however, can fail to produce high quality outputs in
the presence of wide-spread non-local ambiguity.

Analyzing image collections. In the context of global analysis,
Heath et al. [2010] study graph-connectivity across massive im-
age collections to identify interesting visual pathways, while Zach
et al. [2010] use a graph to encode visual relations in image col-
lections and infer false matches based on inconsistencies of cycles
in this graph. However, they do not explicitly model the repeti-
tions as in our method, which we found to improve the quality of
the results significantly. In a follow-up work, Cohen et al. [2012]
propose to use symmetry priors with collinearity and orthogonal-
ity constraints in an additional bundle adjustment step to reduce
drifts in a given initial SfM output. They use the method of Zach et
al. [2010] to compute the initial StM output which is assumed to be
free of ambiguity. In contrast, we jointly resolve ambiguities and
enforce symmetry constraints in StM. A similar approach based
on loop-consistency has been recently applied to improve collec-
tions of maps across 3D shapes [Nguyen et al. 2011]. Roberts et
al. [2011] focus on a specific instance of the image matching prob-
lem where large duplicate structures are present in the scene. They
build a probabilistic framework in which non-geometric cues such
as the image time-stamps are combined with geometric ones. In a
recent effort, Jiang et al. [2012] also propose a framework to han-
dle ambiguities with a special focus on scenes with large dupli-
cate structures. They eliminate the dependency on the image time-
stamps by formulating the problem as finding the spanning tree of
a matching graph minimizing a global energy function and propose
a greedy search algorithm. Our approach is inspired by these meth-
ods to establish globally consistent image relations. Unlike all other

previous efforts, however, we jointly focus on regularity detection
and constrained SfM formulation. By explicitly detecting regular
structures (i.e., planar 2-parameter grids) as an initial step, we sig-
nificantly reduce the search space for finding the optimal transfor-
mation that relates a pair of images. We show that by simultane-
ously calibrating the cameras, extracting the 3D regularities, and
reconstructing the 3D geometry, we achieve significant improve-
ments both in terms of robustness and accuracy.

Structural priors. Structural priors, when available as in the case
of urban scenes, have been used to improve the output quality of
image-based reconstruction methods (see [Musialski et al. 2012]
and references therein). For example, coplanarity constraints [Bar-
toli and Sturm 2003] and vanishing points [Sinha et al. 2010] have
been explored in several StM methods. Xiao et al. [2008] use StM
output to represent building facades as rectangular or developable
surfaces. Recently, Wan et al. [2012] propose a framework to re-
construct piecewise-planar buildings that incorporates constraints
based on the relations between the facades of a building. Such
methods, however, assume access to the detected structures.

A potential solution is to first extract 3D structures from initial
SfM reconstructions and then use the constraints to regularize the
output. Such a decoupled approach, however, can fail since the low
quality 3D geometry makes robust structure detection difficult. In
our tests even with high-resolution inputs, the output point sets
from Bundler [Snavely et al. 2006] or Zach et al. [2010] are too
coarse to reliably initialize transform domain grid-fitting as pro-
posed by Pauly et al. [2008]. While such grid extraction methods
can succeed for clean and dense SfM output [Jiang et al. 2011],
the results of such a decoupled approach degrade sharply when the
input images are of low-resolution or have significant ambiguities
(see Figure 14). Intuitively, the lack of reliable feature detectors for
sparse point sets and accumulation errors in the initial reconstruc-
tion lead to poor initial grid estimates, which cannot be corrected
by subsequent local refinements. Further, if the SfM outputs have
gross errors due to ambiguity across repeated elements (see Fig-
ure 1), subsequent analysis of the 3D point sets can only extract
wrong constraints. Other possibilities involve integrating informa-
tion from other acquisition modes (e.g., LIDAR scans as used by
Zheng et al. [2010] and Li et al. [2011]) or allowing the user to
indicate symmetry structures on 3D data (e.g., [Nan et al. 2010])
(see the recent survey of Mitra et al. [?] for a more detailed dis-
cussion on the use of symmetry priors in architecture modeling). In
contrast, we demonstrate that even a purely image-based symmetry
detection and scene reconstruction can successfully produce high
quality 3D geometry without relying on specialized acquisition se-
tups (e.g., LIDAR and aerial scans) or extensive manual work.

Symmetry for image-based modeling. Symmetry can be ex-
ploited to extract dense 3D reconstruction even from a single image
as shown by Wu et al. [2011]. They extract image-level horizontal
repetitions to establish pixel-level correspondences for camera es-
timation and 3D reconstruction. Earlier, Jiang et al. [2009] perform
camera calibration from a single image by exploiting symmetry and
produce textured polygonal reconstructions guided by interactive
user annotations. These methods, however, assume the complete
facade to be visible in a single image. Such assumptions are often
violated as in all our test image sets.

Ceylan et al. [2012] propose a method to accurately reconstruct
urban buildings from multiple images using lines as prior. However,
the method assumes the input images to be pre-calibrated, which
is difficult in the presence of repetition ambiguities. In contrast,
we simultaneously extract facade repetitions and scene calibration
leading to reliable 3D reconstruction. Note that different from all
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Fig. 3: Starting from a set of unordered facade images (25 images in this example), we first rectify the individual images. We then propagate
the user-marked repeated element (shown in orange) in one image to all the other images and perform symmetry detection in each image. We
use the initial repetition information (shown in yellow) to solve for a consistent global repetition pattern using a graph-based optimization. We
perform a symmetry-based SfM reconstruction to simultaneously calibrate the cameras and extract a 3D reconstruction. With the obtained 3D
scene structure, we refine the initial rectification and repeat the SFM computation. The reconstruction along with the resultant back-projected
repeated elements on the images can then be used to enable a range of editing possibilities.

other methods, we directly solve for symmetry coupling that is then
used for non-local image edits (see Section 6).

3. OVERVIEW

Figure 3 shows an overview of our processing framework (see also
Algorithm 1). Our algorithm takes as input a set of unordered im-
agesZ := {I1,...,I,} of a building, which we assume to contain
one or multiple 1- or 2-parameter repetition patterns on each fa-
cade. (In the absence of such repetitions, our algorithm produces
standard SfM output.) Note that neither the full facade repetition
grid needs to be completely visible in any single image, nor do the
repetitions have to be restricted to a single facade.

After the images have been rectified, the user roughly indicates
elements of interest, e.g., a repeating window frame visible across
the input images, on any one of the input images. This is the only
manual assistance required in our reconstruction pipeline. We then
compute initial estimates for the grid generators of the repetition
patterns (Section 4.1).

Next, in a key algorithmic stage, we pose correspondence search
across images in Z as solving for offset positions for each image
on a (unknown) global repetition grid (Section 4.2). We simultane-
ously solve for offset positions and estimate the associated camera
parameters for each image, while also detecting the 3D repetition
pattern. The optimization is formulated as selecting a subset of con-
sistent edges from a matching graph, where a node corresponds to
an image in Z and each edge denotes an estimated image-pair align-
ment, which can possibly be wrong. We solve for a consistent set
of edge alignments by progressively refining the alignments.

Subsequently, we perform bundle adjustment with the extracted
symmetries as constraints that encode the grid arrangements of the
repeating structures (Section 4.3). We iterate by refining the initial
vanishing line estimates (Section 4.4) and also extend our algorithm
to handle multiple repetition grids (Section 4.5). Thus our algo-
rithm outputs the final camera poses and a sparse 3D reconstruction
of the scene together with the refined symmetry parameters in 3D.
We then use this information to explore a range of editing possibil-
ities coupled across multiple images with the detected symmetries
providing non-local binding.

4. ALGORITHM

In this section, we provide the details of the individual components
of our pipeline (see Algorithm 1).

4.1 Initial Grid Estimation

Our goal is to bring the input facade images Z into correspondence.
We exploit the underlying facade repetition structure to restrict the
continuous space of alignments to a discrete set of possibilities, i.e.,
correspondence across an underlying 2-parameter repetition grid.
Hence, in this preprocessing stage, we detect such repetition grids
for each image, which are then used in Section 4.2 to globally es-
tablish correspondence across all the individually extracted grids.
We start by analyzing each image as described next.

Building facades typically contain dominant repetitions arranged
along vertical and horizontal directions. Therefore, we first detect

Input: A set of images [ and a user marked template 7'
Output: Camera parameters VI; € Z, 3D scene structure, and
the 3D symmetry information

1 foreach I; € I do
2 I; < Rectify(l;);
3 InitialGridEstimation(l;, T7;
4 end
/* Symmetry-based Image Registration x/
5 define G := (V,E),V «+ I, E « 0
6 foreach I;,I; € T do
7 if FindCandidateAlignment (I;, I;) then
8 ‘ FE «+ €ij ] E,
9 end

10 end
11 {x.} + ImageMatchingOptimization(E);
12 M < FindMinimumSpanningTree (G, {x.});
13 SymmetryBasedSFM(M);
14 VanishinglLineRefinement ();
15 SymmetryBasedSFM(M);
Algorithm 1: Algorithm pseudocode (Section 4).
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Fig. 4: Given a pair of rectified images (left) with a repeating element T’
marked in one image (top-left), we use SIFT features to estimate the scale
factor s relating the image pair (middle). We then create a scaled template
sT suitable for the other image. Subsequently, we detect image-level repe-
titions (marked in yellow) across each individual rectified image (right).

dominant vanishing points in each image I; € 7 using the cascaded
Hough transform [Tuytelaars et al. 1998] and use these vanishing
points to rectify the original images to be fronto-parallel. (With
slight abuse of notation, we use I; to also denote the corresponding
rectified images.) Note that for images where multiple facades are
visible, multiple vanishing points are detected and rectification is
performed with respect to each of these candidate vanishing points.
In the successive stages, we detect repetitions in each of these recti-
fied images which may result in multiple detected grids for a single
image.

Since the rectified images can be at different scales, we match
features across them to estimate their relative scalings. Specifically,
since rotation effects are compensated through rectification, we ex-
tract SIFT features with fixed upright orientation and estimate the
scale change between a pair of rectified images by clustering the
scale differences between the feature matches (see also Baatz et
al. [2010]) (see Figure 4). Note that ambiguous feature matches
arising from repetitions do not affect the scale estimation as SIFT
features detected in a rectified image have similar scales across the
repeating elements. Thus, at the end of this step, we have an esti-
mated scale s; for each image I;. We set s; = 1.

User interaction. In order to prescribe the element of interest, the
user marks a single repeated element 77 in any one of the recti-
fied images, say I;. Then for all other images I;, we scale the el-
ement using the estimated scales s;, i.e., T; < s;77 and use the
scaled element as template for the respective image (see Figure 4).
We perform template matching in the images by comparing local
image patches based on the (scaled) template regions using nor-
malized cross correlation (NCC) (see also [Ceylan et al. 2012]).
Note that although other image-based symmetry detection methods
(e.g., [Wuetal. 2010]) can also be used in this step to automatically
select a template, we found it desirable to allow the user to indicate
the template in a single image to ensure we work on an element that
is visible across multiple images. Furthermore, this user assistance
identifies a semantically meaningful repeating element which can
be used in a variety of editing applications.

Finally, for each image, we complete the initialization by fitting
a grid to the detected elements and estimating its corresponding
grid generators [Pauly et al. 2008] (see Figure 5 (left)). Note that
missing grid elements are recovered in the subsequent stages.

4.2 Symmetry-based Image Registration

The key to successful SfM computation is correctly establishing
image correspondences. For images of facades with dominant sym-
metries, correspondence extraction is difficult as repeating struc-
tures create multiple locally-consistent matches, many of which are
wrong. Hence, we establish globally-consistent correspondences
by explicitly using the extracted repetition information. Intuitively,
our goal is to position each rectified image on a regularity grid with
spacing as extracted in Section 4.1. Using the current symmetry
estimates for each image, positioning the images amounts to as-
signing discrete index positions on the repetition lattice. In other
words, the transformation between the images amounts to calculat-
ing shifts in rows and columns required to align the corresponding
grids in the images. In order to consistently assign these shifts, we
collectively analyze the images as described next.

For each image pair (I;, I;), a candidate alignment can be en-
coded as the number of rows and columns the corresponding grids
should be shifted over each other. Using the detected grids, all pos-
sible candidate alignments between I; and I; can be listed as the
different shifts in rows and columns. Our goal is to rank such can-
didates to find the most likely alignment for the image pair. We use
SIFT feature matches detected in the original images to perform
this evaluation. The detected SIFT features can be grouped into
two categories: (i) features that are found outside the repetition re-
gions are most likely to help disambiguate the correct alignment
between an image pair; and (ii) features that are detected inside

Fig. 5: Symmetry guided feature matching: Given a pair of images with
their detected grids (left), for each candidate alignment we detect the over-
lapping grid regions (shown in green). We compute feature matches outside
the overlapping regions and count the number of matches that support the
candidate alignment. Top right shows the correct alignment with highest
support (51 supporting feature matches are in blue) and the bottom right is
a wrong candidate alignment (25 supporting feature matches are in red).
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Fig. 6: Using an iterative linear optimization, we compute the global image alignments. Starting from all the candidate pairwise matches, at
each iteration we assign costs to the candidate alignments and replace the alignments with high costs by composing alignments along the
shortest paths in the graph. Effectively, the quality of the alignments are improved (the wrong alignments at each iteration are in red) and the
minimum spanning tree of the final graph (shown as solid edges) provides the image alignments used in the successive steps of the pipeline.

the repetition regions are likely to result in ambiguous matches.
In practice, we observe that grid regions also contain discrimi-
nating features due to small random variations such as the shape
of curtains, window customization, etc. Therefore, instead of dis-
carding all the features detected inside the repetition regions we
only discard those features that are most likely to cause ambiguous
matches. Specifically, each candidate alignment between an image
pair overlaps certain grid regions according to the encoded shift in
rows and columns. We assume that a correct alignment will map
the grid regions that are most similar in both images. Further, the
feature matches obtained from the remaining regions would agree
with the candidate alignment. Therefore, for each candidate align-
ment, we discard the features detected only inside the overlapped
grid cells and match the remaining features. Each pair of feature
matches produces an estimate of the scale and translation that maps
the corresponding rectified images the grids lie on. We convert each
of these estimates to shifts in rows and columns between the two
grids by computing the grid cells they map. (Two grid cells are con-
sidered to be mapped to each other if the distance between the cell
centers after mapping is below a certain threshold, 2% of the image
width in our experiments.) The feature matches, which suggest the
current row/column shift being evaluated, provide support for this
candidate (see Figure 5). For each image pair (I;, I;), we pick the
candidate alignment that receives the highest support and assign
a weight w;; equal to the fraction of supporting feature matches.
After all pairwise candidate alignments are detected, we normalize
the support weights of the alignments by dividing by the maximum
number of support matches.

We observe that exploring the grid information during feature
matching improves the quality of the detected candidate align-
ments. However, considering only local pairwise relations is un-
likely to resolve all the ambiguities. Instead, we analyze collections
of pairwise relations as described next.

Image matching graph. We encode the detected pairwise matches
as a matching graph G := (V, E) where the nodes n; € V rep-
resent images I;, while the edges e;; € K represent the align-
ment picked between image pairs (I;, I;). Each edge is weighted

by the corresponding support w;; measured as the fraction of sup-
porting feature matches. We note that such edges in this graph are
constructed using information only from image pairs, and hence
can contain spurious matches due to ambiguity arising from repe-
titions. In order to detect such spurious edges, we look for consis-
tency among edges in cycles in this matching graph to assess the
reliability of the image alignments (see also [Heath et al. 2010]).
Specifically, since accumulated alignments along the edges in any
cycle in the graph represent a mapping from an image to itself, the
corresponding cumulative transform should be the identity, i.e., ac-
cumulated corresponding grid shifts should result in zero row and
column shift. Thus, any cycle where the accumulated shifts do not
cancel out indicates the presence of at least one incorrect align-
ment edge in the cycle. We call such cycles inconsistent. Our task
is to identify such spurious edges in inconsistent cycles and remove
them from G, while still retaining the consistent alignments.

Optimization setup. Based on the above observation, we now se-
lect a consistent set of alignment edges while discarding the wrong
alignments. Effectively, we identify the wrong alignments based
on the corresponding supporting weights and the inconsistencies
involved. We introduce a binary penalty cost x. € {0, 1} for each
edge e € E, where a penalty cost of 1 denotes a wrong alignment
and a penalty cost of 0 indicates a correct alignment. Our goal is
to extract a globally consistent penalty cost assignment for all the
edges in G via a joint formulation. We extract such a set of consis-
tent assignment of costs {x. } for edges e € E as:

min{Xc} ZeEE WeXe
subject to ZeeLi Xe>1, VL; €L, €))

where L denotes all the detected inconsistent cycles in the graph
G. In our implementation, we only look at 3-cycles in the matching
graph G to save computation (see also [Nguyen et al. 2011]).

In order to make the above integer problem convex, we relax the
constraints x. € {0,1} to be x. € [0,1]. We solve the resultant
problem using CVX, a package for specifying and solving convex
programs [Grant and Boyd 2008; CVX Research 2012].
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In order to map the solution of the optimization to a binary label-
ing problem, we propose an iterative approach. Intuitively, we first
resolve 3-cycles in the graph G and then use the extracted consis-
tent edges to improve estimates of the other alignments. In order to
balance between global consistency and local feature-level image
pair matching, we discourage rejection of high confidence edges,
i.e., edges with high weights. Hence, we normalize the computed
edge penalties as X, < X./w. for all the edges. (We update the
range of x. to be [0.1, 1] to avoid getting continuous penalties of
0.) Next, we use the current edge costs X/, to improve image align-
ments. Specifically, for any edge e;; € EX we compute the shortest
path between image nodes n;,n; using the edge costs {x.} in G.
If the cost of such a shortest path is less than the cost of the orig-
inal edge, we replace the alignment denoted by e;; by composing
the alignments along the shortest path, thus potentially improving
the alignment for images I;, I; (see Figure 7). We also update the
weight w;; to be the minimum of the weights along the shortest
path. Note that the alignments replaced in this manner implicitly
represent longer paths and hence the 3-cycles considered in the
successive iterations actually end up as longer cycles in the orig-
inal graph (see also [Nguyen et al. 2011]). After performing the
necessary alignment replacements, we re-solve a new global opti-
mization using Equation 1 and continue the process.

This iterative algorithm converges when no more alignment gets
replaced (8-10 iterations in all our examples). After convergence,
we select the minimum spanning tree of G based on the final edge
costs { X/, } to obtain the final image alignments (see Figure 6). We
use these alignments to filter the pairwise feature matches and pre-
serve only the matches that support the corresponding alignments.

Non-grid alignment. In case of images where no grid is detected or
a candidate grid-matching alignment with sufficient support (a min-
imum of 20 supporting feature matches in our tests) is not found,
we perform traditional SIFT feature matching and encode the can-
didate alignment as a transformation matrix. In order to evaluate
the consistency of a cycle involving non-grid alignments, we com-
pute the rotation associated with each of the candidate alignments
and compute the composite rotation Ry, along the cycle (see Zach
et al. [2010]). In a consistent cycle, R should be equivalent to
the identity transformation. However, in a noisy setting this equiva-
lence holds only approximately. We compute the rotation angle .y,
of Ry, using a quaternion representation and mark the cycle as in-
consistent if oy | is greater than a threshold angle (10° in our tests).
In our datasets, such non-grid alignments were invoked for the im-
ages that view the corners of a building with multiple facades.

4.3 Symmetry-based Structure-from-Motion

In Section 4.2, we established globally consistent feature corre-
spondences across the input images. In addition, we computed the
center point of each extracted grid element and form correspon-
dences across these points over all the images. We use these cor-
respondences to estimate the extrinsic camera parameters, while
using the EXIF tags to obtain the focal length of the cameras. Fi-
nally, using these initial camera parameters and the grid point cor-
respondences across the images, we obtain rough 3D grid points
and corresponding grid generators. Note that at this stage, both the
camera parameters and the estimated transform generators are only
approximate. We refine these parameters by a non-linear bundle
adjustment algorithm, as described next.

We first organize the feature matches and the grid correspon-
dences between the images into tracks where each track represents
a connected set of matching points across the images. Given such a
set of feature tracks and the estimated camera parameters, our goal

Fig. 7: For the images I1, I2, I3 (in top), the wrong candidate alignment
between (I1, I2) (in red) is replaced by the correct accumulated alignment
along the shortest path I; — I3 — I (the edge cost {x. } for each align-
ment is given) during the iterative grid optimization. For each alignment,
the overlapped images are shown together with the mapped grid regions (in
yellow and green).

is to recover the 3D position corresponding to each track. We refine
the camera positions and orientations to minimize the reprojection
errors, i.e., the distance between the projection of a track point and
its corresponding image matches. More importantly, we use the es-
timated symmetry relations between the grid points as a regularizer.
Thus, instead of independently computing each 3D grid point, we
simultaneously look for the 3D grid parameters, the position of a
reference point, and the generators, which minimize the sum of the
reprojection errors of all the grid tracks.

Assume we have a set of m cameras parameterized by Ag. Let
P(Ayg, p) denote the projection function mapping a 3D point p to
its 2D projection q in the k-th camera with parameters Aj,. Further-
more, assume a grid with r rows and ¢ columns is represented by

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



8 ceylan, mitra, zheng, pauly

the reference point o and the grid generators (ty,, t,,). Minimizing
the reprojection error of the grid tracks corresponding to this 3D
grid is equivalent to minimizing the following energy:

Egriq == ZZZAZHQZ — P(Ak, x45) |, @)

k=11i=1 j=1

where the 3D grid point at the ¢-th row and j-th column of the grid
is represented as X;; = o + (i — 1)t;, + (j — 1)t,. qf; denotes
the projection of this point in the k-th camera. )\fj is an indicator
variable equal to 1 if this grid point is visible in the camera and 0
otherwise.

Moreover, assume we have n non-grid feature tracks parameter-
ized by the 3D points b;. Minimizing the sum of the reprojection
errors for these tracks is equivalent to minimizing the following
energy:

Eothe'r = Z Z/Bfan - P(Ak7 bz)||7 (3)

k=11i=1

where S is an indicator variable with 3% = 1 if point b; is visible
in the k%" camera and 0 otherwise.

Finally, we combine the energy terms for the 3D grid and the
non-grid tracks and minimize the resulting objective function using
the Levenberg-Marquardt method (see Lourakis et al. [2009]):

E:= Egm'd + Eother~ 4

At the end of this enhanced bundle adjustment step, we obtain the
refined camera parameters, a sparse 3D representation of the scene,
and the refined grid parameters.

4.4 Vanishing Line Refinement

The results obtained at this stage retain any bias introduced in the
initial vanishing line detection used for rectification. To reduce this
bias, we update the rectification of the input images using the com-
puted 3D geometry. Specifically, we fit planes to the reconstructed
3D point cloud where each plane corresponds to a facade of the
building. Then we find the facade plane on which each detected 3D
grid lies and update the position of each 3D point representing a
grid cell by projecting to its facade plane. We back-project these
3D points to the input images to refine the grid correspondences
between the images. Please note that, in case the repeating facade
elements are found at a large depth offset than the facade plane,
small shifts might be observed in the location of the grid correspon-
dences in the non-frontal viewpoints. However, in our experiments
we did not observe this to create serious artifacts. Experimentally
we found that any minor errors that might have occurred during the
grouping of the image grids (due to small variations in grid trans-
formations which have not been detected in image space) are fixed.
For each 3D point x representing a grid cell in a 3D grid, we com-
pute the average reprojection error as:

Perror = 3 A [la* = P(Ak, %)/ >N, ®)
k=1 k=1

where \* is an indicator variable equal to 1 if this grid point has
been detected in the k-th image, and q” denotes this detected 2D
grid point if AF is 1. We exclude the grid cells for which P, 1S
above a certain threshold (5% of image width in our experiments)
and update the number of rows and columns of a grid accordingly.
With these refined correspondences, we re-run the constrained bun-
dle adjustment step to obtain the final camera parameters and the

%UUWBVQQVQQ&%DDVVQW

4
i vy v g g final bundle adjustment
Fig. 8: Once we obtain the initial 3D scene representation, we refine the rec-
tification of the input images and update the grid correspondences by fitting
3D planes to the reconstructed geometry (each fitted plane is shown in a
different color). We compute the average reprojection error of each 3D grid
point and discard the grid cells with high errors. In the initial image match-
ing step, the windows in red have been grouped together with the windows
in yellow (resulting in a 2-by-4 grid) but have been discarded due to high
reprojection error (resulting in a 2-by-3 grid). We perform the constrained
bundle adjustment with the updated correspondences to compute the refined
3D scene representation.

3D grids. In our tests, we found a single iteration of refinement to
be sufficient (see Figure 8).

4.5 Extension to Multiple Grids

We now describe how we adapt our pipeline to handle multiple
grids, which can occur as (i) multiple arrangements of the same
base element, or (ii) grids of different user indicated base elements.

Given any image pair (I;, I;), let us assume multiple grids have
been detected in these images. Any grid pair (g;, g;), where g; € I;
and g; € I, that shares the same base element is a potential pro-
jection of the same 3D grid. Therefore, during the image feature
matching step, we list all the potential matching grid pairs across
the images. For each such grid pair (g;, g;), we perform the sym-
metry guided feature matching step as explained in Section 4.2.
Specifically, we evaluate all the candidate alignments correspond-
ing to different shifts in rows and columns between the grids g; and
g;- Once the candidate alignments have been evaluated for all the
grid pairs, we pick the alignment with the highest support. Using
the feature matches that support this selected alignment, we detect
the remaining matching grids in the images (I;, I;) that are the pro-
jection of the same 3D grid and find the corresponding row/column
shifts between them. We add the selected alignment to the match-
ing graph G as edge e;; encoding the grid shifts between all the
matching grids between the corresponding images.
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Fig. 9: Starting from a set of input images and a sample repeated element(s) marked on a single image (shown in orange), we simultaneously
recover the 3D repetition patterns, calibrate the cameras, and reconstruct the scene geometry. The information is then used for a range of
coupled image manipulations (see supplementary for complete results, comparisons, and applications).

Later, in the iterative optimization setup, for each cycle in the
image matching graph, we consider the accumulated alignments
between all the common grids in the images participating in the cy-
cle. More specifically, for a cycle between the images I;, I;, and I},
grids g; € I;, g; € I;, and g, € I} are common grids if the edge
e;; encodes a grid shift between g; and g;, e;;, encodes a grid shift
between g; and g, and ey; encodes a grid shift between g, and g;.
If the accumulated grid shifts between any such common grid do
not cancel out, the cycle is marked as inconsistent. Similarly, if an
alignment is to be swapped with an accumulated alignment along
the shortest paths in G, all the grid shifts represented by the edge
between the common grids in the images involved in the path get
updated.

At the end of the iterative optimization, the final alignments com-
puted for each image pair (/;, I;) encode the correct matching im-
age grids and the shifts between them. Using these alignments, all
the image grids matched to each other across the input images are
grouped together where each group represents the image projec-
tions of the same 3D grid. For each 3D grid, we organize the grid
correspondences as grid tracks. We update the bundle adjustment

objective function to include a grid energy term for each of the g
3D grids and refine the parameters of each 3D grid with this bundle
adjustment step:

g
E:= Z Egrid + Eother- (6)
1
Figure 11 shows the results in presence of multiple facades.

5. EVALUATION

We evaluate our framework on several data sets with varying com-
plexity of the underlying symmetries. We now summarize our main
findings, while referring to the supplementary material for com-
plete results and comparisons with other methods. Table I lists the
performance statistics of our algorithm for each dataset.

In our framework, we explicitly detect repeating elements in the
input images and use this information both to extract reliable im-
age correspondences and estimate camera parameters accurately.
We compare this approach to a standard SfM pipeline [Snavely
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Table I. : The table shows the number of input images (V;), the resolution of
the images in megapixels (res), and the total number of repeating elements
detected (IV;.) for each data set. We also report how our method, Bundler,
and the method of Zach et al. perform: a correct reconstruction is produced
(yes), the output is poor in quality (poor), there is a confusion in the number
of repeated elements (conf.), or reconstruction contains multiple misaligned
components (mult.). The computation times for image-based symmetry de-
tection (Ts) and a single iteration of symmetry-based SfM (7)) are given
in minutes measured on a 2.8 GHz 4-core machine.

N;| res| N.| Ts T, Ours | Bundler| Zach et

(mins)| (mins) al. 10
Bld. 1 26| 62| 28 10 5 yes poor no
Bld. 2 271 7.7| 42 15 2 yes conf. poor
Bld. 3 26| 35| 10 8 2 yes yes yes
Bld. 4 241 7.7| 44 6 1.5 yes yes yes
Bld. 5 251 62| 22| 20 1.5 yes conf. poor
Bld. 6 32| 62| 22| 40 1 yes yes poor
Bld. 7 51| 62| 101 45 6 yes mult.. mult.
Bld. 8 721 62| 36| 50 8 yes no mult.
Bld. 9 13| 6.2 0 4 1 no no no
Bld. 4 241 05| 44 1 0.5 yes no conf.
lowRes

et al. 2006] and the inference-based ambiguity detection method
of Zach et al. [2010], which also has been used as an initializer
in the follow-up work of Cohen et al. [2012]. To illustrate the ef-
fect of accurate camera pose estimation for dense reconstruction,
we use a state-of-the-art multi-view stereo method [Furukawa and
Ponce 2007] to produce dense reconstructions of the input scenes
using the camera parameters estimated by each of the methods. We
use the EXIF tags of the images to estimate the focal length in
all three cases. In Table I, we report how these three methods per-
form on each dataset marking the output based on if (i) a correct
reconstruction is obtained, (ii) output is poor in quality, (iii) wrong
number of repeated elements is reconstructed, or (iv) multiple sub-
models corresponding to different subsets of the input images are
reconstructed.

Our algorithm accurately extracts the camera parameters in most
of the examples leading to accurate dense reconstructions, while
Bundler [Snavely et al. 2006] or the approach of Zach et al. [2010]
fail or often produce sparser reconstructions (see Figure 9 and sup-
plementary materials). Explicit encoding of the extracted symme-
try information enables our method to effectively evaluate the re-
liability of the alignments between the input image pairs. In the
symmetry-guided feature matching step, we first list all the candi-
date alignments between an image pair, and then discard the po-
tential ambiguous matches. We observe that the remaining sparse
set of feature matches arising due to non-repeating regions and the
random variations in the non-discarded repeating regions (such as
ornaments, weathering, etc.) often provide sufficient support for the
correct alignments.

Moreover, during the global optimization performed on the
matching graph, we iteratively improve the quality of the align-
ments based on the supporting feature matching weights and by
discarding the discovered inconsistencies. Figure 10 illustrates the
effectiveness of the grid constraints during the iterative graph opti-
mization step. As a result, we achieve robustness even in the pres-
ence of large number of wrong pairwise alignments (see Figure 6)
which otherwise inhibits producing a reasonable output or leads to
confusion in the number of repetition elements.

3

e X ﬁ‘ :,«; ,. J |
.,'v “ £y “ ot ; ”ﬁj' ‘;‘ v.
A %M without symmetry information

Fig. 10: (Top) Explicit encoding of the symmetry information effectively
resolves the image alignment ambiguities during 3D reconstruction. (Bot-
tom) If the symmetry information is discarded during the iterative graph
optimization and the consistency between the image alignments is evalu-
ated based on the corresponding rotations only, some ambiguities remain
unresolved and only a subset (18 of 26) of the input image set is calibrated.

Figure 11 shows performance of our method on multiple facades
of buildings. Please note that we do not make any assumption about
orthogonality across facade faces.

Comparison. In Figure 12, we compare our method to the recent
approach of Jiang et al. [2012] that formulates the image matching
problem as finding the spanning tree of the image matching graph
minimizing a global energy function. They propose a greedy search
algorithm that resolves an important portion of the image matching
ambiguities. They do not explicitly model any particular form of
symmetry or repetition. Instead, by injecting symmetry priors into
every step of the reconstruction pipeline, our method effectively
resolves the remaining ambiguities and significantly improves the
quality of the reconstructions. Further, in contrast to all other meth-
ods, our approach produces the repetition patterns directly as part
of the output.

Symmetry as regularizer. Figure 13 illustrates the effect of us-
ing additional symmetry constraints in bundle adjustment on the
quality of the final reconstructions. Given a set of feature tracks,
explicitly enforcing the symmetry relations across the grid corre-
spondences acts as a regularizer and significantly reduces drift, es-
pecially in long image sequences. Further, our algorithm success-
fully recovers the correct orientation of the individual facade planes
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building 7 (51 images)

building 8 (72 images)

sample inputimage  extracted regular repetitions + reconstructed 3D geometry + calibrated cameras

top view

Fig. 11: Our approach can successfully handle buildings with multiple facades and recover the 3D repetition pattern on each facade. Note
that 3D geometry extracted using grid constraints preserves the correct orientation of the individual facades both for orthogonal (building 8)
and non-orthogonal (building 7) relations. We provide a satellite imagery of building 7 for reference.

Jiang et al. (2012)

building 1

72\

building 4
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Fig. 12: Comparison with the method of Jiang et al. [2012]. For the build-
ing 1 dataset, their method registers 21 out of 26 images. On these three
examples, our method, which implicitly considers facade-level symmetry,
distributed the error evenly across the facades. This effect is particularly vis-
ible on building 7 dataset, where our method produces significantly higher-
quality output especially for the right facade of the building highlighted in
orange. By directly considering symmetry information, our method robustly
prevents drift effects on facades with many repeated elements.

of a building without any additional assumption on the orientation
relations like orthogonality.

Robustness to low-resolution inputs. Our symmetry-aware corre-
spondence search makes the approach robust to degrading image
resolution. To illustrate this, we tested our framework on an image
set at two resolutions (see Figure 14). Both Bundler and the method

front view

Y no symmetry constraints

g

S

S — . . - . —

B T T s T e S S R e K e
top view

L
§ i %0 A \“ ‘\

front view

with symmetry constraints

Fig. 13: Global constraints lead to improved SfM reconstructions: 3D ge-
ometry extracted using correspondences recovered from the constructed so-
lution graph without and with non-local symmetry prior. Note that the un-
constrained solution produces a distorted facade (blue dotted line shown for
reference) with the repeated elements drifting from the correct solution.
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high resolution input images
3216x2412

low resolution input images
804x603

Bundler (2006)

Zach et al. (2010)

proposed method

Fig. 14: Our method to simultaneously extract scene repetitions and 3D
geometry is robust even with low-resolution input images. In contrast, pop-
ular methods like Bundler [2006] or state-of-the-art alternatives like Zach
et al. [2010] degrade quickly. We also show the recovered camera positions
for comparison, with ground truth camera path being near-linear.

of Zach et al. [2010] performed poorly in the low-resolution setting
because a significant amount of features are only seen in the high
resolution images due to small random variations in the facade el-
ements. However, our method extracts the correct relations among
the input cameras using the sparse feature set by exploring the ini-
tially detected repetitions in the images.

Limitations. Although we handle a range of diverse datasets, the
approach still suffers from the following limitations: We assume

e
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i

Fig. 15: In absence of detected regular 1- or 2-parameter repetitions (as in
the right image), our algorithm degenerates to SfM methods. The uneven
spacing among the marked elements in the left image prevents detection of
the near regularity.
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Fig. 16: For the dataset where sample input images are shown (top), due to
lack of sufficient discriminating feature matches our method fails to resolve
the ambiguities. The dense reconstructions computed with the camera pa-
rameters obtained from our method and Bundler are shown (bottom). The
method of Zach et al. [2010] does not produce any camera parameters.

facade elements to be repeated along 1- or 2-parameter regular
grids and do not handle rotational symmetries as found on domes,
churches, etc. In certain cases repeated elements have non-uniform
gaps with sufficiently small variations that cannot be recovered nei-
ther in image space nor the 3D reconstruction step (see Figure 15).
Further, repetitions might be arranged in skewed distributions. As a
result, image-based regular structure detection fails and our method
effectively degenerates to standard SfM approaches.

Even though the symmetry-guided correspondence search and
the iterative global optimization improves the quality of the image
alignments significantly, we do require a sufficient amount of dis-
criminating features to bootstrap the process (see Figure 16). Al-
though we do not require the repetition grids to be visible in full
from any single image, we do expect a reasonable overlap between
the images so that we get a connected solution graph. In the absence
of sufficient overlap, the solution graph can have multiple compo-
nents. While we did not encounter such a problem in our examples,
in the future we want to better characterize the requirements on the
input images. Finally, we focus on facades with dominant facade
planes. If facade elements show significant depth variations, image
based repetition detection cannot be performed reliably [Jiang et al.
2011]. Focusing on planar facades, we obtain limited depth infor-
mation in our 3D reconstructions, especially around sharp features,
statues, etc., which limits the scope of subsequent editing possibil-
ities.

6. APPLICATIONS

Once we register the set of input images and extract the symmetries
of the scene, our system allows the user to perform various image
editing applications, while automatically propagating the changes
to all the images, as described next. Besides demonstrating vari-
ous use scenarios, these applications are important to highlight the
robustness and accuracy of the reconstruction algorithm as the ap-
plications heavily rely on precise symmetry boundaries.

Occlusion Removal. Often street-level images of building facades
contain many foreground objects such as street lights, trees, and
cars, which partially occlude the background facade plane. Redun-
dancy in the form of multiple images and repeated elements in the
input set allows us to synthesize seamless textures to remove such
occlusions.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Coupled Structure-from-Motion and 3D Symmetry Detection for Urban Facades . 13

Given a set of input images [y, ..., I,,, we require the user to
provide rough strokes on a single reference image I, to denote the
occluding object that is to be removed. We use GrabCut [Rother
et al. 2004] to extract an accurate mask B; for the occlusion area.
(Note that if the occluder object has delicate structures, like tree
leaves, we require the user to provide more refined strokes.) Typi-
cally, each pixel in this bounded region occludes a point that lies on
the main facade plane. Our goal is to synthesize the texture for this
occluded area of the facade plane, which we approximate by using
the 3D grid information extracted in Section 4.

We back-project each pixel p € B; in the occlusion region to
the facade plane to obtain the 3D position P of the corresponding
occluded point. We then project P to the other images to find a set
of candidate pixel colors that can be used to replace p in the refer-
ence image. Once a set of candidate colors have been computed for
each pixel, the desired texture is synthesized by estimating a label
L(p) € [1,...,n] for each pixel p denoting which image should be
used as the source color for p. We formulate this texture synthesis
problem as a Markov Random Field (MRF) optimization by mini-
mizing an energy function consisting of data and smoothness terms.
The data term Fg,¢, (p, L(p)) defines the cost of assigning the label
L(p) to pixel p and is defined as Eqq:q (p, L(p)) =| Iy (p) —p |
where I7,(,y denotes the color of pixel p in the labeled image and
p is the median of the candidate colors for pixel p. To reduce the
seams in the synthesized texture, we define a smoothness term to
asses the labelings of neighboring pixels by evaluating the color and
the gradient differences similar to Sinha et al. [2008]. We use the
graph cut algorithm [Boykov et al. 2001] to optimize the defined
energy function and choose the source images for each pixel in the
synthesized texture. Finally, we use Poisson blending [Pérez et al.
2003] to further reduce the seams across the occlusion boundaries
in the original image (Figure 17).

Importantly, once the user-marked occluding area B; is removed
from the reference image, we can propagate the edit and remove the
occluder also from the other images. To enable this operation, we
need depth estimates for the occlusion object in the reference view

PatchMatch result

input image + mask collection-based comp.
Fig. 17: Occlusion removal using facade information propagated from other
images. In contrast, single image based state-of-the-art PatchMatch [Barnes
et al. 2009] can lead to artifacts as highlighted in red (see supplementary for
additional examples).

Fig. 18: Occlusion mask marked in one image (top-left) is propagated to the
other images using the reconstructed 3D geometry (top row). Subsequently,
we use the reconstructed 3D facade geometry to complete the occluded re-
gions. See supplementary material for additional examples.

to determine its projection in the other images. As the occluding
object lies in front of the main facade plane, we construct a depth
volume bounded by the reference camera position and the depth of
the facade plane and use an MRF energy minimization approach
to optimize for the depth of each pixel in the occluded area. We
formulate the data term of the MRF energy based on NCC match-
ing costs of image patches (see [Campbell et al. 2008]) and define
the smoothness energy as the weighted sum of the depth devia-
tion between a pixel and its 4-connected neighbors [Szeliski et al.
2008]. Similar to Sasaki et al. [2006], we define the data term in
a multi-resolution framework to increase the accuracy of the depth
estimates. Once the depth estimates for each pixel in the reference
occluding region are computed, this region is projected to the other
images and the texture is synthesized in these projected areas as
described before (see Figure 18 and supplementary material).

Grid Editing. Our framework extracts 2D/3D symmetry informa-
tion of the input scene in the form of planar repetition grids. This
information allows the user to directly manipulate the grids such
as changing the repetition count in the grid as previously shown by
Wau et al. [2010] or editing the appearance of the grid elements on a
single image. The system automatically propagates the changes to
the other images as the relation between the 2D image grids and the
global 3D grid is already computed. Technically, we first extract ac-
curate boundaries of the repeating elements by snapping their initial
contours to the image edges and optimizing for the common con-
tour by a line fitting approach similar to Ceylan et al. [2012]. In
contrast to their method, we only optimize for the contour lines as
we have already extracted the refined 3D grid generators. Once the
contour of each grid element is computed, we change the number
of repetitions in the 3D grid by keeping the boundaries of the grid
fixed and appropriately scaling the grid elements. This amounts to
editing only the relevant parts of each image where the 3D grid
projects to (see Figure 19). We synthesize the texture for the new
grid elements by scaling the original elements. To minimize seams
and lighting variations, for each new grid element, we use the tex-
ture from the spatially closest original grid element. In case of oc-
clusion, we require the user to roughly annotate the occluding ob-
ject, while we perform necessary image completion as described
before. The occluding object is encoded as a separate layer and
later composed with the edited images (see Figure 19).

Limitations. The proposed consistent image editing applications
are only as powerful as the detected symmetries. Also, lack of suf-
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Fig. 19: (Top) Extracted facade grid patterns are changed and then com-
posited with the foreground (e.g., lamp post); (bottom) repetition pattern
manipulated and the changes propagated to the other images (see supple-
mentary for additional examples).

ficient depth information can lead to artifacts near 3D elements
on the original images (e.g., window ledges, etc.). Thin structures
(e.g., tree branches, leaves) can be difficult to annotate in the im-
ages and also challenging to propagate across images since corre-
sponding 3D points are few and sparse. Finally, grid editing can
lead to semantic ambiguities across the grid boundaries, e.g., the
drainpipes in the museum example (see Figure 19).

7. CONCLUSION

We presented a structure-from-motion framework that detects and
conforms to structural regularities, while simultaneously recover-
ing 3D geometry starting from a set of facade images. A novel
graph-based global analysis yields a globally consistent 3D geome-
try reconstruction with explicit encoding of the facade regularities.
These regularities can then be used for a range of novel image ma-
nipulations, while maintaining consistency across the images. Our
evaluation shows the robustness and accuracy of the framework on
arange of challenging facade image sets.

With the growing demand for simple, fast, and accurate acqui-
sition methods for urban facades in digital cities, we expect to see
increasing research efforts in this direction. A natural extension of
our approach will be to incorporate rotational symmetries and sur-
faces of revolution as found on arches, domes, etc. Although in this
work we focused on facades with dominant facade planes, in the
future, we plan to investigate how to handle depth variations. One
approach would be to extend the work of Wu et al. [2011] that ex-
tracts the depths of the repeating facade elements in a single view
to a multiple-view setting. However, we believe that handling small
depth changes due to the presence of architectural features like or-
naments, window ledges, etc. requires further investigation.

Moreover, extending this approach to handle building colonies
where elements are also repeated across different buildings, or
repeated window elements are in different open/close configura-
tions [AlHalawani et al. 2013] are interesting research directions.
Finally, the coupled symmetry information and 3D reconstruc-
tion suggests novel editing applications by combining information
across the images and the sparse 3D geometries, which can lead
to interactive and dynamic interfaces when integrated with existing
navigation systems such as Google Streetview. We present a first
result in Figure 20.

Fig. 20: Future work. The extracted scene geometry along with symmetry
information can be used towards new editing possibilities. In this example,
we can add a synthetic 3D gargoyle model spaced according to the extracted
repetitions and keep the changes consistent across the images. Insets show
the original images and the inserted statue. Advanced appearance matching
can potentially be used for better color blending (e.g., [Zheng et al. 2012]).
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